Committed to connecting the world

PP-22

5G - Fifth generation of mobile technologies

​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​​5G BCKGROUNDERWSIS Forum 2018 Photo Contest, Holographic Lenses at the Coding Garage, Mexico​​

Overview

Challenges and solutions: building 5G networks for the future

Deployed 5G networks deliver more speed and capacity to support massive machine-to-machine communications and to provide low-latency (delay), high-reliability service for time-critical applications. Based on the numerous existing, commercial networks, IMT-2020 demonstrates high performance in different scenarios such as dense urban areas and indoor hotspots.

With its ambitious goals, 5G networks faced considerable challenges. The increased capacity and data rates enabled by 5G may require more spectrum and vastly more spectrally efficient technologies, beyond what is used in 3G and 4G systems.

Some of this additional spectrum will come from frequency bands above 24 GHz, which pose considerable challenges. The first challenge refers to the intrinsic propagation characteristics of this part of the spectrum (a.k.a. millimeter waves).  These radio waves propagate over much shorter distances than those of medium- (between 1-6 GHz) and low- (below 1 GHz) frequency bands.

Hence, coverage of a given area will require a significantly increased number of base stations that will increase the complexity of the infrastructure, including the need to deploy radio equipment on street facilities, such as traffic lights, lampposts, utility poles and power supplies.

Another challenge relates to 5G connection links between base stations and the core network (backhaul), which rely both on fiber and wireless technologies. Considerable work is required for implementing fiber services and ensuring availability of wireless backhaul solutions with sufficient capacity, such as microwave and satellite links, and potentially with high-altitude platform stations (HAPS) systems where they are deployed.

Furthermore, spectrum is a scarce and very valuable resource, and there is intense – and intensifying – competition for spectrum at the national, regional and international levels. As the radio spectrum is divided into frequency bands allocated to different radiocommunication services, each band should be used only by the allocated services with established technical condition so that they can coexist with each other without creating harmful interference to adjacent services.

ITU-R studies examine the sharing and compatibility of mobile services with a number of other existing radiocommunication services, notably the services used for satellite communications, weather forecasting, monitoring of Earth resources and climate change and radio astronomy.

National and international regulations need to be adopted and applied globally to avoid interference between 5G and these services and to create a viable mobile ecosystem for the future — while reducing prices through the global market's economies of scale and enabling interoperability and roaming.

That's why it was important for the spectrum used by 5G to be identified and harmonized at global and regional levels. For similar reasons, the radio technologies used in 5G devices need to be supported by globally harmonized standards.

ITU’s contribution


ITU plays a leading role in managing the radio spectrum and developing globally applicable standards for IMT-2020. Its activities and the resulting, globally applicable documents, enable the development and implementation of international regulations and standards to ensure that 5G networks are secure, interoperable, and that they operate without causing or receiving harmful interference to or from adjacent services.

Based on its experience designing standards for International Mobile Telecommunications (IMT) in 3G and 4G, ITU regularly brings together the leading engineers and experts in mobile and fixed backhaul technologies to work on 5G and future generations of mobile broadband services.

Under ITU's IMT-2020 programme, ITU membership is developing the international standards to achieve well-performing 5G networks.​


 

Last update: April 2022 ​