Page 736 - 5G Basics - Core Network Aspects
P. 736

2                                                 Transport aspects


                                    Table 9-2 – Summary of the PMS-TC_MGMT primitives

                  Primitive         Direction                             Description

             KFEC               FME → PMS-TC      The number of FEC information bytes in the data path, see clause 9.3.
             RFEC               FME → PMS-TC      The number of FEC redundancy bytes in the data path, see clause 9.3.
             Q                  FME → PMS-TC      The number of FEC codewords in a single DTU, see clause 8.2.
             KRMC               FME → PMS-TC      The number of FEC information bytes in the RMC path (RMC frame
                                                  size), see clause 9.6.3.
             BDR                FME → PMS-TC      The number of DTU bytes in an RMC data frame, see clause 9.5.

             BD                 FME → PMS-TC      The number of DTU bytes in a normal (non-RMC) data frame, BDN in
                                                  the NOI and BDD in the DOI, see clause 9.5.
             CNTLF              FME → PMS-TC      Logical frame count, see clause 10.5.1.
             CNTSF              FME → PMS-TC      Superframe count, see clause 10.6.
             RMC message, TX    FME → PMS-TC      TX RMC message primitives, see clause 9.6.4.
             RMC message, RX    PMS-TC → FME      RX RMC message primitives, see clause 9.6.4.

             RTX_CTRL           FME → PMS-TC      Retransmission control parameters, see clause 9.8.2.
             fec anomaly        PMS-TC → FME      See clause 11.3.1.1.
             rtx-uc anomaly     PMS-TC → FME      See clause 11.3.1.1.
             rtx-tx anomaly     PMS-TC → FME      See clause 11.3.1.1.
             lor defect         PMS-TC → FME      See clause 11.3.1.3.

            9.2     DTU scrambler

            The scrambling algorithm shall be as represented by the equation below; the output bit of data x(n) at the
            sample time n shall be:

                                             x(n) = m(n)+ x (n – 18) + x (n – 23),
            where m(n) is the input bit of data at the sample time n. The arithmetic in this clause shall be performed in
            the Galois Field GF(2).
            The scrambler states shall be reset to all ONES before inputting the first bit of each DTU (the LSB of the SID
            field, see clause 8.2.1.1).

            Incoming bytes shall be input to the scrambler LSB first. All bytes of every incoming DTU shall be scrambled.

            9.3     DTU encoder
            After scrambling, the DTU shall be fed into the DTU encoder.

            A  standard  byte-oriented  Reed-Solomon  code  shall  be  used  for  forward  error  correction  (FEC).  A  FEC
            codeword shall contain NFEC = KFEC+RFEC bytes, comprised of RFEC check bytes c0, c1,...,c RFEC–2 , c RFEC–1  appended
            to KFEC data bytes m0, m1, ...,m KFEC–2 , m KFEC–1 . The check bytes shall be computed from the data bytes using
            the equation:

                                              C (D )   M  (D )D R FEC  modG (D )
            where:

                         M (D )  m 0 D K FEC  1   m 1 D K FEC  2   ...m K FEC  2 D m K  FEC  1      is the data polynomial,

                         C (D )  Dc 0  R FEC  1    Dc 1  R FEC  2   ...c R FEC   2 D c R FEC    is the check polynomial , and
                                                                          1 
                                       i
                     G (D )   (D    )  is the generator polynomial of the Reed-Solomon code, where the index of
                     the product runs from i= 0 to RFEC-1.


            726
   731   732   733   734   735   736   737   738   739   740   741