This page is being moved to a new, faster, and mobile-friendly application! Access the enhanced and centralized experience now on
MyWorkspace
!
Connecting the world and beyond
ITU
General Secretariat
Radiocommunication
Standardization
About ITU-T
Events
All Groups
Standards
Resources
BSG
Study Groups
Regional Presence
Join Us
MyWorkspace
Development
ITU Telecom
Members' Zone
Join ITU
ITU-T Recommendations
You are here
Home
>
ITU-T Recommendations
>
ITU-T G.722 (09/2012)
Share
Search by number:
Others:
Content search
Advanced search
Provisional name
Equivalent number
Formal description
Study Groups tree view
All SGs
TSAG
Study Group 2
Study Group 3
Study Group 5
Study Group 11
Study Group 12
Study Group 13
Study Group 15
Study Group 17
Study Group 20
Study Group 21
ITU-T G.722 (09/2012)
عربي
|
中文
|
English
|
Español
|
Français
|
Русский
64千比/秒内的7 kHz音频编码
ITU-T G.722建议书描述了音频宽带(WB、50到7000 Hz)编码系统的特性,该系统可能会用于各种高质量的语音应用。这个编码系统采用比特率在64 kbit/s以内的分波段自适应差分脉冲编码调制(SB-ADPCM),自此该系统被认为是64 kbit/s(7 kHz)的音频编码,在使用的SB ADPCM技术中,频带被分为两个分波段(较高的和较低的分波段),对各个分波段中的信号采用ADPCM进行编码,该系统具有三种基本的运行模式,对应于7 kHz音频编码所采用的比特率:64、56 和48 kbit/s。后两种模式通过利用来自较低分波段的比特,在64 kbit/s范围内分别提供了8和16 kbit/s的辅助数据信道,勘误1包含在这个新版本中,以及一些附加的确定为ITU-T G.722建议书正文的排印错误。附件A提供了3个频率掩模,这些掩模能够用于简化大量生产的采用ITU-T G.722编解码器的设备的评估,使安装期间进行的检查更为简单,这里的掩模不是明确地打算取代该建议书的任何要求,而是打算提出对大产量的采用ITU-T G.722编解码器的设备进行验收测试的需求,它们关注的是采用SB-ADPCM的环路中信号总失真比的测量,因此,这些技术要求不是要取代ITU-T G.722算法的测试数字序列,而是为了确保只要在最初的模型中已经检查了这些序列,就可以保持使用这些编解码器的设备的质量。附件B描述了一种可伸缩的超宽带(SWB, 50 14 000 Hz)语音和音频编码算法,工作在64、80 和96 kbit/s。ITU-T G.722超宽带扩展编解码器与ITU-T G.722能够互操作,ITU-T G.722 SWB编码器输出的带宽为50 14 000 Hz,编码器工作帧长为5 ms,算法时延为12.3125 ms ,最坏情况下的复杂度为22.76 个WMOPS。编码器输入和解码器输出均以缺省值32 kHz.进行采样,适合于改进的ITU-T G.722 64 kbit/s核心的超宽带编码器产生一个两层结构的嵌入式比特流,与 80到 96 kbit/s两个可用的比特率相对应。适合于改进的ITU-T G.722 56 kbit/s核心的超宽带编码器产生一个单层结构的嵌入式比特流,对应于可用的比特率64 kbit/s 。该64 kbit/s模式也可升级为80 kbit/s 和96 kbit/s模式,比特流能够在解码器端或者被通信系统的任何部件截短,以便立即将比特率调整至期望的数值(96 kbit/s – 80 kbit/s – 64 kbit/s),而不需要带外信令。基本的算法包括3个主要部分:高频带增强,带宽扩展(BWE)和基于代数矢量量化(AVQ)的改进的离散余弦变换(MDCT)域中的变换编码,在这个修订的版本中,对附件B的文本向量进行了更新,从而使它们能够更加有助于检查实现的一致性。附件C描述了一个基于浮点运算的ITU-T G.722附件B的备选实现,当附件B提供了一个位精确、定点技术要求,以及可以从ITU-T获得定点C源代码时,可供选择的浮点实现对于配备了浮点处理器的平台是有用的,已发现这个可选的浮点运算与附件B在所有配置下均能完全互操作,包括交叉配置。附件D描述了宽带编解码器ITU-T G.722的立体声扩展及其超宽带扩展ITU-T G.722附件B,它最适合于以有限的附加比特率传输立体声信号,同时保持与两个编解码器的完全兼容,附件D工作在64到 128 kbit/s,具有4个比特率为80、 96、112和128 kbit/s 的超宽带立体声以及2个比特率为64 和80 kbit/s的宽带立体声。宽带立体声模式向下兼容传统的ITU-T G.722,同时超宽带模式提供了与单声道宽带ITU-T G.722和超宽带ITU-T G.722附件B的向下兼容,立体声编解码器工作帧长为5 ms,对于宽带立体声算法时延为13.625 ms,对于超宽带立体声算法时延为15.9375 ms。对于宽带和超宽带工作模式,编码器的输入和解码器的输出分别以16 kHz和32 kHz进行采样,基本的算法包括3个主要部分:编码器端的立体声参数分析和混音,解码器端的立体声合成。第一个立体声扩展层是一个8 kbit/s层,包含了基本的立体声参数、宽带声道间时间差/声道间相位差/声道间相干性和分波段声道间电平差。第二个立体声层也是一个8 kbit/s层,通过对低频分波段声道间相位差进行编码来提高立体形象。最后,第三个立体声层是一个16 kbit/s层,在这最后一层中,会发送更大带宽的声道间相位差,从而进一步提高立体形象。比特流能够被解码器或者通信系统的任何部件截短,以便立即将比特率调整到期望的数值,包括宽带ITU-T G.722和超宽带ITU-T G.722附件B比特流,而不需要带外信令。该建议书的附录I和II分别提出了主体算法的联网情况和测试序列,在这个新的版本中,对附录II进行了更新以反映测试序列针对ITU-T G.722主体的重构。包丢失隐藏(PLC)算法也被称为帧消除隐藏算法,将传输损失隐藏在音频系统中,在该系统中,对输入信息进行编码和分组,经过网络发送,接收并在播放前进行解码。在大多数最近的标准语音编码器中均能找到PLC算法,最初设计的ITU-T G.722不具有这样一个特性,因此,附录III和IV为ITU-T G.722提供了两种PLC机制,经过检验,两个附录中的算法具有高质量性能以及可选的质量/复杂度的折衷,与没有PLC的ITU-T G.722解码器相比,最坏情况下的附加复杂度为2.8 个WMOPS、平均复杂度为2个 WMOPS,附录III中描述的ITU-T G.722 PLC算法提供了更好的语音质量,而ITU T G.722附录IV中规定的ITU-T G.722 PLC提供了更低的复杂度,几乎不会给主体ITU-T G.722解码增加复杂度(最坏情况下附加的复杂度为0.07个 WMOPS)。附录III中的算法实现ITU-T G.722解码器16 kHz输出域内的包丢失隐藏,周期性的波形外插用于填充丢失数据包的波形,根据丢失之前的信号特性与经过滤波的噪声相混合,外插的16 kHz信号通过QMF信号滤波器组,将分波段信号传送到部分的分波段ADPCM编码器以便更新分波段ADPCM解码器的状态,对于每次数据包丢失都要进行附加的处理,以便提供从外插波形到由接收到的数据包解码获得波形的平滑过渡,其中,分波段ADPCM解码器的状态与数据包丢失之后最先接收到数据包的相位一致,在为了平滑过渡将解码波形与外插波形进行叠加之前,解码波形是时间偏离的以便与外插的波形对齐。对于长时间的数据包丢失,算法会逐步减弱输出的声音,算法工作的固有帧长为10 ms,能够工作在10 ms倍数的任何分组长度或帧长。与使用相同帧长的常规ITU-T G.722解码相比,这样不会产生附加的时延。在附录IV中,解码器包括三个阶段:较低分波段解码、较高分波段解码和正交镜像滤波器(QMF)合成,在没有帧消除的情况下,解码器的结构和ITU-T G.722相同,除了较高和较低分波段的两个解码信号的存储以外。在有帧消除的情况下,通过坏帧指示(BFI)信令告知解码器,然后解码器对过去的低波段重构信号进行分析,采用线性预测编码(LPC)、基音同步周期重复和自适应消声外插丢失的信号,一旦接收到好帧,解码信号会与 外插的信号平滑转换。在较高的分波段,解码器采用自适应消声和高通后处理同步地重复以前的帧间距,在每次帧消除之后,均要对自适应差分脉冲编码调制(ADPCM)的状态进行更新。附录V定义了一种适合于采用[ITU-T G.722]附件B所定义的超宽带扩展的中端(MS)立体声的编码方案。通过将中端立体声编码引入到立体声终端,能够以非常低的复杂度获得与单声道设备的互操作。基本的编码方案如下:将左-右(LR)两个声道转换为中端立体声的两个声道,然后采用ITU-T G.722附件B对各个声道的信号独立进行编码;于是,在解码器端,对来自编码器的比特流的中端信道分别进行解码,然后将中端声道的解码信号反向变换为LR声道的信号,LR-MS变换及其逆变换均采用常规方式进行。在编码器端,LR-MS变换需要每个样本增加两次算术运算,在解码器中,MS-LR变换需要一个运算子。在STL2009(参见ITU-T G.191建议书)基本运算子实现中,总的变换复杂度约等于0.2个WMOPS,各个声道的编码算法与ITU-T G.722建议书附件B中的算法相同。附件B、C和D包含了采用ANSI C源代码提供的电子附件,该电子附件是这些附件的组成部分,也提供了作为附录III和IV组成部分的ANSI C源代码。注 — 在ITU-T G.191软件工具库的ITU-T G.722模块中可以找到ITU-T G.722正文中算法的ANSI-C 代码参考实现。在该建议书的正文中提供了用于ITU-T G.722算法一致性测试的测试序列,提供了测试向量以便有助于检查附件B、C和D以及附录III和IV运行的正确性。
Citation:
https://handle.itu.int/11.1002/1000/11673
Series title:
G series: Transmission systems and media, digital systems and networks
G.700-G.799: Digital terminal equipments
G.710-G.729: Coding of voice and audio signals
Approval date:
2012-09-13
Provisional name:
G.72x
Approval process:
AAP
Status:
In force
Maintenance responsibility:
ITU-T Study Group 21
Further details:
Patent statement(s)
Development history
Associated test signals
Editions
Related Supplement(s)
Related technical papers and reports
Ed.
ITU-T Recommendation
Status
Summary
Table of Contents
Download
3.1
G.722 (2012) Amd. 1 (10/2014)
In force
here
-
here
3
G.722 (09/2012)
In force
here
here
here
2.8
G.722 (1988) Amd. 2 (03/2011)
Superseded
here
-
here
2.7
G.722 (1988) Amd. 1 (11/2010)
Superseded
here
here
here
2.6
G.722 (1988) App. IV (11/2009)
Superseded
here
here
here
2.5
G.722 (1988) App. IV (07/2007)
Superseded
here
here
here
2.4
G.722 (1988) App. IV (11/2006)
Superseded
here
here
here
2.3
G.722 (1988) App. III (11/2006)
Superseded
here
here
here
2.2
G.722 (1988) Annex A (03/1993)
Superseded
here
here
here
2.1
G.722 (1988) App. II (11/1988)
Superseded
-
-
here
2.0
G.722 (1988) Err. 1 (05/2003)
Superseded
here
-
here
2
G.722 (11/1988)
Superseded
-
-
here
1
G.722 (02/1987)
Superseded
-
-
Not available
ITU-T Supplement
Title
Status
Summary
Table of contents
Download
G Suppl. 4 (12/1972)
Certain methods of avoiding the transmission of excessive noise between interconnected systems
In force
-
-
here
G Suppl. 5 (10/1984)
Measurement of the load of telephone circuits under field conditions
In force
-
-
here
G Suppl. 7 (12/1972)
Loss-frequency response of channel-translating equipment used in some countries for international circuits
In force
here
here
here
G Suppl. 8 (12/1972)
Method proposed by the Belgian telephone administration for interconnection between coaxial and symmetric pair systems
In force
-
-
here
G Suppl. 17 (10/1984)
Group-delay distortion performance of terminal equipment
In force
-
-
here
G Suppl. 19 (10/1984)
Digital crosstalk measurement (method used by the Administrations of France, the Netherlands and Spain)
In force
-
-
here
G Suppl. 22 (10/1984)
Mathematical models of multiplex signals
In force
-
-
here
G Suppl. 26 (10/1984)
Estimating the signal load margin of FDM wideband amplifier equipment and transmission systems
In force
-
-
here
G Suppl. 27 (10/1984)
Interference from external sources
In force
-
-
here
G Suppl. 28 (10/1984)
Application of transmultiplexers, FDM codecs, data-in-voice (DIV) systems and data-over-voice (DOV) systems during the transition from an analogue to a digital network
In force
-
-
here
G Suppl. 32 (11/1988)
Transfer of alarm information on 60-channel transmultiplexing equipment
In force
-
-
here
G Suppl. 34 (11/1988)
Temperature in underground containers for the installation of repeaters
In force
-
-
here
G Suppl. 35 (11/1988)
Guidelines concerning the measurement of wander
In force
-
-
here
G Suppl. 36 (11/1988)
Jitter and wander accumulation in digital networks
In force
-
-
here
G Suppl. 39 (03/2025)
Optical system design and engineering considerations
In force
here
here
here
G Suppl. 40 (07/2024)
Optical fibre and cable Recommendations and standards guideline
In force
here
here
here
G Suppl. 41 (07/2024)
Design guidelines for optical fibre submarine cable systems
In force
here
here
here
G Suppl. 42 (10/2018)
Guide on the use of the ITU-T Recommendations related to optical fibres and systems technology
In force
here
here
here
G Suppl. 43 (02/2011)
Transport of IEEE 10GBASE-R in optical transport networks (OTN)
In force
here
here
here
G Suppl. 44 (06/2007)
Test plan to verify B-PON interoperability
In force
here
here
here
G Suppl. 45 (09/2022)
Power conservation in optical access systems
In force
here
here
here
G Suppl. 46 (05/2009)
G-PON interoperability test plan between optical line terminations and optical network units
In force
here
here
here
G Suppl. 47 (03/2025)
General aspects of optical fibres and cables
In force
here
here
here
G Suppl. 48 (06/2010)
10-Gigabit-capable passive optical networks: Interface between media access control with serializer/deserializer and physical medium dependent sublayers
In force
here
here
here
G Suppl. 49 (09/2020)
Rogue optical network unit (ONU) considerations
In force
here
here
here
G Suppl. 50 (09/2011)
Overview of digital subscriber line Recommendations
In force
here
here
here
G Suppl. 51 (06/2017)
Passive optical network protection considerations
In force
here
here
here
G Suppl. 52 (09/2012)
Ethernet ring protection switching
In force
here
here
here
G Suppl. 53 (12/2014)
Guidance for Ethernet OAM performance monitoring
In force
here
here
here
G Suppl. 54 (07/2015)
Ethernet linear protection switching
In force
here
here
here
G Suppl. 55 (12/2023)
Radio-over-fibre (RoF) technologies and their applications
In force
here
here
here
G Suppl. 56 (02/2016)
OTN transport of CPRI signals
In force
here
here
here
G Suppl. 57 (07/2015)
Smart home profiles for 6LoWPAN devices
In force
here
here
here
G Suppl. 58 (07/2024)
Optical transport network module framer interfaces
In force
here
here
here
G Suppl. 59 (02/2018)
Guidance on optical fibre and cable reliability
In force
here
here
here
G Suppl. 60 (09/2016)
Ethernet linear protection switching with dual node interconnection
In force
here
here
here
G Suppl. 62 (02/2018)
Gfast certification
In force
here
here
here
G Suppl. 64 (02/2018)
PON transmission technologies above 10 Gb/s per wavelength
In force
here
here
here
G Suppl. 65 (10/2018)
Simulations of transport of time over packet networks
In force
here
here
here
G Suppl. 66 (09/2020)
5G wireless fronthaul requirements in a passive optical network context
In force
here
here
here
G Suppl. 67 (07/2019)
Application of optical transport network Recommendations to 5G transport
In force
here
here
here
G Suppl. 68 (12/2023)
Synchronization operations, administration and maintenance requirements
In force
here
here
here
G Suppl. 69 (09/2020)
Migration of a pre-standard network to a metro transport network
In force
here
here
here
G Suppl. 70 (09/2020)
Supplement on sub 1 Gbit/s services transport over optical transport network
In force
here
here
here
G Suppl. 71 (12/2023)
Optical line termination capabilities for supporting cooperative dynamic bandwidth assignment
In force
here
here
here
G Suppl. 72 (03/2025)
Modelling consideration for optical media networks
In force
here
here
here
G Suppl. 73 (10/2021)
Influencing factors on quality of experience for multiview video (MVV) services
In force
here
here
here
G Suppl. 74 (12/2021)
Network slicing in a passive optical network context
In force
here
here
here
G Suppl. 75 (12/2021)
5G small cell backhaul/midhaul over TDM-PON
In force
here
here
here
G Suppl. 76 (12/2021)
Optical transport network security
In force
here
here
here
G Suppl. 77 (06/2022)
Supplement 77 to ITU-T G-series of Recommendations - Influencing factors on quality of experience (QoE) for video customized alerting tone (CAT) and video customized ringing signal (CRS) services
In force
here
here
here
G Suppl. 78 (09/2022)
Use case and requirements of fibre-to-the-room for small business applications
In force
here
here
here
G Suppl. 79 (12/2023)
Latency control and deterministic capability over a PON system
In force
here
here
here
G Suppl. 80 (07/2024)
Use case and requirements of fibre-based in-premises networking for home application (FIP4H)
In force
here
here
here
G Suppl. 81 (07/2024)
Practical aspects of PON security
In force
here
here
here
G Suppl. 82 (07/2024)
Enhanced optical line termination with information technology functions
In force
here
here
here
G Suppl. 83 (07/2024)
Supplement on the use of options in the precision time protocol profile with full timing support from the network
In force
here
here
here
G Suppl. 84 (03/2025)
Operational aspects of optical access
In force
here
here
here
G Suppl. 85 (03/2025)
FgODUflex over point-to-multipoint networks
In force
here
here
here
G Suppl. 86 (03/2025)
Fibre to the power grid (FTTGrid) use cases and network requirements
In force
here
here
here
G Suppl. 87 (03/2025)
Standardization framework for optical fibres for space division multiplexing
In force
here
here
here
Title
Approved on
Download
Roadmap for QoS and QoE in the ITU-T Study Group 12 context (TR-RQ)
2023
here
Considerations on the use of GNSS as a primary time reference in telecommunications
2020
here
Use of G.hn in industrial applications
2020
here
Practical procedures for subjective testing
2011
here
ISDN field trial guidelines
1991
here
Follow us
Twitter
Facebook
YouTube
Flickr
Linkedin
Instagram
Soundcloud
Podcasts
Spotify
Spreaker
TikTok