Page 75 - Kaleidoscope Academic Conference Proceedings 2024
P. 75

Innovation and Digital Transformation for a Sustainable World




               current progress,  applications,  advantages,  and  [23] S. Sridevi, B. Indira, S. S. Dutta, S. Sandeep and
               challenges,”  Artificial Intelligence Review,  vol.  A. Sreenivasan, “Quantum Enhanced Support Vector
               56,  pp.  13521–13617,  2023,  doi:   https:       Machine with Instantaneous Quantum Polynomial
               //doi.org/10.1007/s10462-023-10466-8.              Encoding for Improved Cyclone Classification,” in
                                                                  2023 6th International Conference on Recent Trends
           [12] B.F. Wee, S. Sivakumar, K.H. Lim et al., “Diabetes  in Advance Computing (ICRTAC), Chennai, India, pp.
               detection based on machine learning and deep learning  748-752, 2023, doi: 10.1109/ICRTAC59277.2023.
               approaches,” Multimedia Tools and Applications, vol.  10480791.
               83, pp. 24153–24185, 2024, doi: https://doi.org/
               10.1007/s11042-023-16407-5.                    [24] “Scikit-learn:  Machine  learning  in  Python
                                                                  —   Scikit-learn  1.4.2  documentation,”  https:
           [13] S. Wang and S. Zhang, “RETRACTED ARTICLE:         //scikit-learn.org/stable/.
               Application of big data classification effects based on
               neural network in video English course and relevant  [25] “IBM Quantum Computing | Qiskit,” https://www.
               optimization suggestions,” Soft Computing, vol. 27, pp.  ibm.com/quantum/qiskit.
               7615–7625, 2023, doi: https://doi.org/10.1007/
               s00500-023-08123-x.
           [14] E. Bisong, “Logistic Regression,” in Building Machine
               Learning and Deep Learning Models on Google Cloud
               Platform, Apress, Berkeley, CA, 2019, doi: https:
               //doi.org/10.1007/978-1-4842-4470-8_20.
           [15] O.A. Montesinos López, A. Montesinos López, and
               J. Crossa, “Support Vector Machines and Support
               Vector Regression,” in Multivariate Statistical Machine
               Learning Methods for Genomic Prediction, Springer,
               Cham, 2022, doi:   https://doi.org/10.1007/
               978-3-030-89010-0_9.

           [16] W. Jia, M. Sun, J. Lian et al., “Feature dimensionality
               reduction: a review,” Complex & Intelligent Systems,
               vol. 8, pp. 2663–2693, 2022, doi: https://doi.org/
               10.1007/s40747-021-00637-x.

           [17] M. A. Nielsen and I. L. Chuang, Quantum Computation
               and Quantum Information. Cambridge University Press,
               2010.
           [18] D. Maheshwari et al., “Variational Quantum Classifier
               for Binary Classification: Real vs Synthetic Dataset,”
               IEEE Access, vol. 10, pp. 3705-3715, 2022.

           [19] M. Aly et al., “Experimental Benchmarking of
               Quantum Machine Learning Classifiers,” in 2023 6th
               International Conference on Signal Processing and
               Information Security (ICSPIS), pp. 240-245, 2023.
           [20] Z. Shao, S. Zhang and S. Kumar, “Quantum
               K-Means Model based on Optimization Framework,”
               in 2023 Asia-Pacific Conference on Image Processing,
               Electronics and Computers (IPEC), Dalian, China,
               pp. 372-376, 2023, doi: 10.1109/IPEC57296.2023.
               00071.
           [21] I. M. De Diego et al., “General Performance Score for
               classification problems,” Applied Intelligence, vol. 52,
               pp. 12049-12063, 2022.

           [22] G. Laskaris et al., “Comparison between Tensor
               Networks and Variational Quantum Classifier,” 2023.




                                                           – 31 –
   70   71   72   73   74   75   76   77   78   79   80