Page 220 - Kaleidoscope Academic Conference Proceedings 2024
P. 220

A survey of current methods,  challenges,  and  [13] Dash, B. (2024). Zero-Trust Architecture (ZTA):
               opportunities. IEEE Access, 10, 112392-112415.     Designing an AI-Powered Cloud Security Framework
                                                                  for LLMs’ Black Box Problems. Available at SSRN
            [3] Kumar, P., Wazid, M., Singh, D. P., Singh, J., Das,  4726625.
               A. K., Park, Y., & Rodrigues, J. J. (2023). Explainable
               artificial intelligence envisioned security mechanism for  [14] Jiang, A. Q., Sablayrolles, A., Roux, A., Mensch, A.,
               cyber threat hunting. Security and Privacy, 6(6), e312.  Savary, B., Bamford, C., ... & Sayed, W. E. (2024).

            [4] Khan, M. Z. A., Khan, M. M., & Arshad, J. (2022,  Mixtral of experts. arXiv preprint arXiv:2401.04088.
               December). Anomaly detection and enterprise security  [15] Lazzari, M., & Salvaneschi, P. (1993). MISTRAL-An
               using user and entity behavior analytics (UEBA). In  expert system for the management of warnings
               2022 3rd International Conference on Innovations in  from automatic monitoring systems of dams. In
               Computer Science & Software Engineering (ICONICS)  ICADERS-2nd Specialist Seminar.
               (pp. 1-9). IEEE.
                                                              [16] Anthony, Q., Tokpanov, Y., Glorioso, P., & Millidge,
            [5] Alahmadi, B. A., Axon, L., & Martinovic, I. (2022).  B. (2024). BlackMamba:  Mixture of Experts for
               99% False Positives: A Qualitative Study of SOC    State-Space Models. arXiv preprint arXiv:2402.01771.
               Analysts’ Perspectives on Security Alarms. In 31st
               USENIX Security Symposium (USENIX Security 22)  [17] A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford,
               (pp. 2783-2800).                                   D. S. Chaplot, D. D. L. Casas, et al., "Mistral 7B," arXiv
                                                                  preprint arXiv:2310.06825, 2023.
            [6] Chen, W., & Zhang, J. (2024). Elevating Security
               Operations:  The Role of AI-Driven Automation  [18] Ramoliya, F., Kakkar, R., Gupta, R., Tanwar, S.,
               in Enhancing SOC Efficiency and Efficacy. Journal      & Agrawal, S. (2023, December). SEAM: Deep
               of Artificial Intelligence and Machine Learning in  Learning-based Secure Message Exchange Framework
               Management, 8(2), 1-13.                            For Autonomous EVs. In 2023 IEEE Globecom
                                                                  Workshops (GC Wkshps) (pp. 80-85). IEEE.
            [7] Riesco, R., & Villagrá, V. A. (2019). Leveraging
               cyber threat intelligence for a dynamic risk framework:
               Automation by using a semantic reasoner and a new
               combination of standards (STIX™, SWRL and OWL).
               International Journal of Information Security, 18(6),
               715-739.

            [8] Iturbe, E., Rios, E., Rego, A., & Toledo, N. (2023,
               August). Artificial Intelligence for next generation
               cybersecurity:  The AI4CYBER framework. In
               Proceedings of the 18th International Conference on
               Availability, Reliability and Security (pp. 1-8).
            [9] Machlev, R., Heistrene, L., Perl, M., Levy, K.
               Y., Belikov, J., Mannor, S., & Levron, Y. (2022).
               Explainable Artificial Intelligence (XAI) techniques for
               energy and power systems: Review, challenges and
               opportunities. Energy and AI, 9, 100169.
           [10] Nassar, A., & Kamal, M. (2021). Machine Learning and
               Big Data analytics for Cybersecurity Threat Detection:
               A Holistic review of techniques and case studies. Journal
               of Artificial Intelligence and Machine Learning in
               Management, 5(1), 51-63.

           [11] Kumar, P., Kumar, R., Aloqaily, M., & Islam, A. N.
               (2023). Explainable AI and blockchain for metaverse:
               A security, and privacy perspective. IEEE Consumer
               Electronics Magazine.

           [12] Alperin,  K. B.,  Wollaber,  A. B.,  & Gomez,
               S. R. (2020, October). Improving interpretability
               for cyber vulnerability assessment using focus and
               context visualizations. In 2020 IEEE Symposium on
               Visualization for Cyber Security (VizSec) (pp. 30-39).
               IEEE.




                                                          – 176 –
   215   216   217   218   219   220   221   222   223   224   225