Page 220 - Kaleidoscope Academic Conference Proceedings 2024
P. 220
A survey of current methods, challenges, and [13] Dash, B. (2024). Zero-Trust Architecture (ZTA):
opportunities. IEEE Access, 10, 112392-112415. Designing an AI-Powered Cloud Security Framework
for LLMs’ Black Box Problems. Available at SSRN
[3] Kumar, P., Wazid, M., Singh, D. P., Singh, J., Das, 4726625.
A. K., Park, Y., & Rodrigues, J. J. (2023). Explainable
artificial intelligence envisioned security mechanism for [14] Jiang, A. Q., Sablayrolles, A., Roux, A., Mensch, A.,
cyber threat hunting. Security and Privacy, 6(6), e312. Savary, B., Bamford, C., ... & Sayed, W. E. (2024).
[4] Khan, M. Z. A., Khan, M. M., & Arshad, J. (2022, Mixtral of experts. arXiv preprint arXiv:2401.04088.
December). Anomaly detection and enterprise security [15] Lazzari, M., & Salvaneschi, P. (1993). MISTRAL-An
using user and entity behavior analytics (UEBA). In expert system for the management of warnings
2022 3rd International Conference on Innovations in from automatic monitoring systems of dams. In
Computer Science & Software Engineering (ICONICS) ICADERS-2nd Specialist Seminar.
(pp. 1-9). IEEE.
[16] Anthony, Q., Tokpanov, Y., Glorioso, P., & Millidge,
[5] Alahmadi, B. A., Axon, L., & Martinovic, I. (2022). B. (2024). BlackMamba: Mixture of Experts for
99% False Positives: A Qualitative Study of SOC State-Space Models. arXiv preprint arXiv:2402.01771.
Analysts’ Perspectives on Security Alarms. In 31st
USENIX Security Symposium (USENIX Security 22) [17] A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford,
(pp. 2783-2800). D. S. Chaplot, D. D. L. Casas, et al., "Mistral 7B," arXiv
preprint arXiv:2310.06825, 2023.
[6] Chen, W., & Zhang, J. (2024). Elevating Security
Operations: The Role of AI-Driven Automation [18] Ramoliya, F., Kakkar, R., Gupta, R., Tanwar, S.,
in Enhancing SOC Efficiency and Efficacy. Journal & Agrawal, S. (2023, December). SEAM: Deep
of Artificial Intelligence and Machine Learning in Learning-based Secure Message Exchange Framework
Management, 8(2), 1-13. For Autonomous EVs. In 2023 IEEE Globecom
Workshops (GC Wkshps) (pp. 80-85). IEEE.
[7] Riesco, R., & Villagrá, V. A. (2019). Leveraging
cyber threat intelligence for a dynamic risk framework:
Automation by using a semantic reasoner and a new
combination of standards (STIX™, SWRL and OWL).
International Journal of Information Security, 18(6),
715-739.
[8] Iturbe, E., Rios, E., Rego, A., & Toledo, N. (2023,
August). Artificial Intelligence for next generation
cybersecurity: The AI4CYBER framework. In
Proceedings of the 18th International Conference on
Availability, Reliability and Security (pp. 1-8).
[9] Machlev, R., Heistrene, L., Perl, M., Levy, K.
Y., Belikov, J., Mannor, S., & Levron, Y. (2022).
Explainable Artificial Intelligence (XAI) techniques for
energy and power systems: Review, challenges and
opportunities. Energy and AI, 9, 100169.
[10] Nassar, A., & Kamal, M. (2021). Machine Learning and
Big Data analytics for Cybersecurity Threat Detection:
A Holistic review of techniques and case studies. Journal
of Artificial Intelligence and Machine Learning in
Management, 5(1), 51-63.
[11] Kumar, P., Kumar, R., Aloqaily, M., & Islam, A. N.
(2023). Explainable AI and blockchain for metaverse:
A security, and privacy perspective. IEEE Consumer
Electronics Magazine.
[12] Alperin, K. B., Wollaber, A. B., & Gomez,
S. R. (2020, October). Improving interpretability
for cyber vulnerability assessment using focus and
context visualizations. In 2020 IEEE Symposium on
Visualization for Cyber Security (VizSec) (pp. 30-39).
IEEE.
– 176 –