Page 23 - ITU Journal Future and evolving technologies Volume 2 (2021), Issue 4 – AI and machine learning solutions in 5G and future networks
P. 23

ITU Journal on Future and Evolving Technologies, Volume 2 (2021), Issue 4




          REFERENCES                                           [11] Fabien Geyer and Georg Carle. “Learning and Gen‑
                                                                     erating Distributed Routing Protocols using Graph‑
           [1] Franco Scarselli, Marco Gori, Ah Chung Tsoi,          Based Deep Learning”. In: Proceedings of the Work‑
               Markus Hagenbuchner, and Gabriele Monfardini.         shop on Big Data Analytics and Machine Learning
               “The Graph Neural Network Model”. In: IEEE Trans‑     for Data Communication Networks. 2018, pp. 40–
               actions on Neural Networks 20.1 (2008), pp. 61–80.
                                                                     45.
           [2] Krzysztof Rusek and Piotr Chołda. “Message‑     [12] Miquel    Ferriol‑Galmés,  José  Suárez‑Varela,
               passing Neural Networks Learn Little’s Law”. In:      Pere Barlet‑Ros, and Albert Cabellos‑Aparicio.
               IEEE Communications Letters 23.2 (2018), pp. 274–
                                                                     “Applying Graph‑Based Deep Learning to Re‑
               277.
                                                                     alistic Network Scenarios”. In: arXiv preprint
           [3] Krzysztof  Rusek,  José  Suárez‑Varela,  Albert     arXiv:2010.06686 (2020).
               Mestres, Pere Barlet‑Ros, and Albert Cabellos‑
                                                               [13] Barcelona Neural Networking Center. GNN Chal‑
               Aparicio. “Unveiling the Potential of Graph Neural
               Networks for Network Modeling and Optimization        lenge Website. https : / / bnn . upc . edu /
                                                                     challenge2020/. Accessed: 2021‑01‑22.
               in SDN”. In: Proceedings of the ACM Symposium on
               SDN Research. 2019, pp. 140–151.                [14] Xiaojun Hei, Jun Zhang, Brahim Bensaou, and Chi‑
                                                                     Chung Cheung. “Wavelength Converter Placement
           [4] Krzysztof Rusek, José Suárez‑Varela, Paul Almasan,  in Least‑Load‑Routing‑Based Optical Networks Us‑
               Pere Barlet‑Ros, and Albert Cabellos‑Aparicio.        ing Genetic Algorithms”. In: Journal of Optical Net‑
               “RouteNet: Leveraging Graph Neural Networks for       working 3.5 (2004), pp. 363–378.
               Network Modeling and Optimization in SDN”. In:
               IEEE Journal on Selected Areas in Communications  [15] Fernando Barreto, Emı́lio CG Wille, and Luiz Naca‑
               38.10 (2020), pp. 2260–2270.                          mura Jr. “Fast Emergency Paths Schema to Over‑
                                                                     come Transient Link Failures in OSPF Routing”. In:
           [5] András Varga and Rudolf Hornig. “An Overview of      arXiv preprint arXiv:1204.2465 (2012).
               the OMNeT++ Simulation Environment”. In: Pro‑
               ceedings of the 1st International Conference on Sim‑  [16] João Pedro, João Santos, and João Pires. “Perfor‑
               ulation Tools and Techniques for Communications,      mance Evaluation of Integrated OTN/DWDM Net‑
               Networks and Systems & Workshops. 2008, p. 60.        works with Single‑Stage Multiplexing of Optical
                                                                     Channel Data Units”. In: 13th International Confer‑
           [6] Robert B Cooper. “Queueing Theory”. In: Proceed‑      ence on Transparent Optical Networks. IEEE. 2011,
               ings of the ACM’81 Conference. 1981, pp. 119–122.
                                                                     pp. 1–4.
           [7] Jean‑Yves Le Boudec and Patrick Thiran. Network
                                                               [17] J. Kurose and K. Ross. Computer Networking: A Top‑
               Calculus: A Theory of Deterministic Queuing Systems
                                                                     Down Approach, 7th Edition. Pearson Education
               for the Internet. Vol. 2050. Springer Science & Busi‑
                                                                     Limited, 2017. ISBN: 978‑0‑13‑359414‑0.
               ness Media, 2001.
                                                               [18] Knowledge‑De ined Networking. RouteNet Chal‑
           [8] Raouf Boutaba, Mohammad A Salahuddin, Noura           lenge Github Repository. https : / / github .
               Limam, Sara Ayoubi, Nashid Shahriar, Felipe           com/knowledgedefinednetworking/RouteNet-
               Estrada‑Solano, and Oscar M Caicedo. “A Com‑          challenge. Accessed: 2021‑02‑03.
               prehensive Survey on Machine Learning for
               Networking: Evolution, Applications and Research  [19] Jorge Sola and Joaquin Sevilla. “Importance of In‑
               Opportunities”. In: Journal of Internet Services and  put Data Normalization for the Application of Neu‑
               Applications 9.1 (2018), pp. 1–99.                    ral Networks to Complex Industrial Problems”. In:
                                                                     IEEE Transactions on Nuclear Science 44.3 (1997),
           [9] Albert Mestres, Eduard Alarcón, Yusheng Ji, and Al‑  pp. 1464–1468.
               bert Cabellos‑Aparicio. “Understanding the Model‑
               ing of Computer Network Delays Using Neural Net‑  [20] Yann A LeCun, Léon Bottou, Genevieve B Orr, and
               works”. In: Proceedings of the Workshop on Big Data   Klaus‑Robert Müller. “Ef icient Backprop”. In: Neu‑
               Analytics and Machine Learning for Data Communi‑      ral Networks: Tricks of the Trade. Springer, 2012,
               cation Networks. 2018, pp. 46–52.                     pp. 9–48.
          [10] Justin Gilmer, Samuel S Schoenholz, Patrick F Ri‑  [21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
               ley, Oriol Vinyals, and George E Dahl. “Neural Mes‑   Sun. “Deep Residual Learning for Image Recogni‑
               sage Passing for Quantum Chemistry”. In: Inter‑       tion”. In: Proceedings of the IEEE conference on com‑
               national Conference on Machine Learning. PMLR.        puter vision and pattern recognition. 2016, pp. 770–
               2017, pp. 1263–1272.                                  778.
                                                               [22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and
                                                                     Jian Sun. “Identity Mappings in Deep Residual Net‑
                                                                     works”. In: Europeanconferenceon computervision.
                                                                     Springer. 2016, pp. 630–645.





                                             © International Telecommunication Union, 2021                     7
   18   19   20   21   22   23   24   25   26   27   28