Page 93 - ITU Journal Future and evolving technologies – Volume 2 (2021), Issue 2
P. 93

ITU Journal on Future and Evolving Technologies, Volume 2 (2021), Issue 2





















           [91] S. Guo, B. Xiao, Y . Yang,  and Y . Yang.  “Energy‑   [103] Y . K. Tun, Y . M. Park, N. H. Tran, W. Saad, S. R.


                  icient    dynamic      loading    and    resource   Pandey, and C. S. Hong.   icient Re‑






                scheduling in mobile cloud computing”. In: IEEE       source Management in UAV‑Assisted Mobile Edge
                INFOCOM 2016  ‑ The 35th  Annual IEEE  Interna‑       Computing”. In: IEEE Communications Letters 25







                tional Conference  on Computer Communications.        (2021).
                2016.
                                                               [104] Q. Hu, Y . Cai, G. Yu,  Z. Qin, M. Zhao, and G. Y .












           [92]  Y . Wang,  Z. ‑Y . Ru, K. Wang,  and P . ‑Q. Huang.   Li. “Joint   loading and Trajectory Design for













                “Joint Deployment and Task Scheduling Optimiza‑       UAV‑Enabled Mobile  Edge Computing Systems”.







                tion for Large‑Scale Mobile  Users in Multi‑UAV‑      In: IEEE Internet of Things Journal (2019).

                Enabled Mobile Edge Computing”. In: IEEE Tran-
                sactions on Cybernetics (2020).                [105] F . Zhou, Y . Wu,  R. Q. Hu, and Y . Qian.  “Computa‑








                                                                      tion Rate Maximization in UAV‑Enabled Wireless‑
           [93] M.  S. Elbamby, C. Perfecto, C.‑F. Liu, J. Park,







                                                                      Powered Mobile‑Edge Computing Systems”. In:




                S. Samarakoon,  X. Chen, and M. Bennis. “Wire‑        IEEE Journal on Selected Areas in Communications





                less  Edge  Computing  With  Latency  and  Reliabi-   36 (2018).

                lity  Guarantees”. In: Proceedings  of the  IEEE


                107 (2019).                                    [106] Y . Qian, F . Wang, J. Li, L. Shi, K. Cai, and F . Shu. “User
                                                                      Association and Path Planning for UAV‑Aided Mo‑
           [94]  D. O   hmann, M. Simsek, and G. P . Fettweis. “Achie-
                                                                      bile Edge Computing With Energy Restriction”. In:
                ving high availability  in wireless networks          IEEE Wireless Communications Letters 8 (2019).




                by an optimal  number of Rayleigh‑fading links”.




                In:  2014   IEEE   Globecom    Workshops    (GC    [107] S. Wan,  J. Lu, P . Fan, and K. B. Letaief. “Toward









                Wkshps). 2014.                                        Big Data  Processing in IoT: Path Planning  and








                                                                      Resource Management  of UAV Base Stations  in

           [95] M. A. Mahmood, W. K.G. Seah, and I. Welch. “Re‑       Mobile‑Edge Computing System”. In: IEEE  Inter‑

                liability  in wireless sensor networks: A survey




                                                                      net of Things Journal 7 (2020).
                and challenges ahead”. In: Computer Networks 79
                (2015).                                        [108] L. Yang,  H. Yao, J. Wang,  C. Jiang, A. Benslimane,










           [96]  M.  Bennis,  M.  Debbah,  and  H.  V .  Poor.  “Ultrare-  and Y . Liu. “Multi‑UAV‑Enabled  Load‑Balance





                liable  and  Low‑Latency  Wireless  Commu-            Mobile‑Edge Computing for IoT Networks”. In:
                nication: Tail, Risk, and Scale”. In: Proceedings of   IEEE Internet of Things Journal (2020).
                the IEEE 106 (2018).
                                                               [109]  G. Wu, Y . Miao, Y . Zhang, and A. Barnawi. “Energy


           [97] S. P . Boyd, N. Parikh, E. Chu, B. Peleato, and J.    ef icient for UAV‑enabled mobile edge computing








                Eckstein. “Distributed Optimization and Statisti‑     networks: Intelligent task prediction and of loa-
                cal Learning via the Alternating Direction Method     ding”. In: Comput. Commun. 150 (2020).





                of Multipliers”. In: Found. Trends Mach. Learn. 3









                (2011).                                        [110]  Y . Chen and Z. Zheng. “Joint Deployment and
                                                                      Task  Computation  of  UAVs  in  UAV‑assisted
           [98] N. Buchbinder, S. Chen, and J. Naor. “Competitive                                     2020   21st
                                                                      Edge  Computing    Network”.    In:
                Analysis via Regularization”. In: SODA. 2014.         Asia‑Paci ic Network Operations and Management
           [99] Z. Li and Q. Zhu. “Genetic Algorithm‑Based Op‑        Symposium (APNOMS). 2020.







                timization of Of loading and Resource Allocation
                                                                 [111]   J.  Wang,  K.  Liu,  and  J.  Pan.  “Online

                in Mobile‑Edge  Computing”. In: Information  11





                (2020).                                               UAV‑Mounted  Edge Server Dispatching for
                                                                      Mobile‑to‑Mobile  Edge  Computing”.  In:  IEEE





          [100] L. Wan,  L. Sun,  X. Kong,  Y . Yuan,  K. Sun,  and F .   Internet of Things Jour‑ nal 7 (2020).

                Xia. “Task‑Driven Resource Assignment in Mobile



                Edge Computing Exploiting  Evolutionary Com‑   [112]  M. Razaviyayn, M. Hong, Z. Luo, and J. Pang. “Par‑




                putation”. In: IEEE  Wireless Communications 26       allel Successive Convex Approximation for Nons‑
                (2019).                                               mooth Nonconvex Optimization”. In: NIPS. 2014.

          [101] M. Bowling  and M.  Veloso. “Multiagent  learning   [113] D. S. Hochbaum and A. Pathria. “Analysis of the










                using a variable learning rate”. In: Arti icial Intel‑   greedy approach in problems of maximum  k‑





                ligence 136 (2002).                                   coverage”. In: Naval Research  Logistics (NRL) 45















          [102] M. Li, N. Cheng, J. Gao, Y . Wang,  L. Zhao, and X.   (1998).
                Shen. “Energy‑Ef icient UAV‑Assisted Mobile Edge





                                                               [114] B. Javidy, A. Hatamlou,  and S. Mirjalili.  “Ions


                Computing: Resource Allocation  and Trajectory

                Optimization”. In: IEEE Transactions on Vehicular     motion algorithm for solving optimization prob‑
                Technology 69 (2020).                                 lems”. In: Applied Soft Computing 32 (2015).
                                             © International Telecommunication Union, 2021                    79
   88   89   90   91   92   93   94   95   96   97   98