Page 91 - ITU Journal Future and evolving technologies – Volume 2 (2021), Issue 2
P. 91

ITU Journal on Future and Evolving Technologies, Volume 2 (2021), Issue 2








           [44]  M. Ashokkumar and T . Thirumurugan. “Inte‑     [56]  T .  Yang,  Y .  Hu,  M.  C.  Gursoy,  A.  Schmeink,  and  R.


                grated IOT based design and Android ope-              Mathar. “Deep Reinforcement Learning based Re‑





                rated Multi‑purpose  Field Surveillance  Robot        source Allocation  in  Low  Latency  Edge  Compu-



                for  Military   Use”.    In:    Proceedings   of    the   ting   Networks”.   In:   2018    15th
                International  Conference  for  Phoenixes  on         International   Symposium    on    Wireless


                Emerging Current  Trends in Engineering  and          Communication  Systems (ISWCS). 2018.
                Management (PECTEAM 2018). 2018.
                                                                [57] A. Khalili, S. Zarandi, and M. Rasti. “Joint Resource
           [45]  Z. Liu and Q. Zhang. “Adaptive Task Partitioning at   Allocation and Of loading Decision in Mobile Edge
                Local  Device  or  Remote  Edge  Server  for  Of loa-  Computing”. In: IEEE Communications Letters 23
                ding  in  MEC”.  In:  2020  IEEE  Wireless            (2019).
                Communications  and  Networking  Conference

                                                                [58]  Q.  Li,  J.  Zhao, and  Y .  Gong.  “Computation  of loa-
                (WCNC). 2020.

                                                                      ding  and  resource allocation  for mobile  edge






           [46] L. Ji and S. Guo.   icient  Cooperative
                                                                      computing  with  multiple  access points”.  In:

                Resource Allocation in Wireless Powered Mobile        IET Communications 13 (2019).
                Edge Computing”. In: IEEE Internet of Things Jour‑
                nal 6 (2019).                                   [59] J. Zhang, X. Hu, Z. Ning, E. C. ‑. Ngai, L. Zhou, J. Wei,
           [47] X. Cao, F . Wang, J. Xu, R. Zhang, and S. Cui. “Joint   J. Cheng, and B. Hu. “Energy‑Latency Tradeoff for



                Computation and Communication Cooperation             Energy‑Aware Of loading in Mobile Edge Compu-
                for Energy‑Ef icient Mobile Edge Computing”. In:      ting   Networks”.   In:   IEEE   Internet   of
                IEEE Internet of Things Journal 6 (2019).             Things Journal 5 (2018).
           [48] J. Li and T . Lv. “Deep Neural Network based Com‑   [60] S. Yang, F . Li, M. Shen, X. Chen, X. Fu, and Y . Wang.
                putational  Resource Allocation  for Mobile  Edge     “Cloudlet  Placement  and Task Allocation  in Mo‑





                Computing”. In: 2018  IEEE  Globecom Workshops        bile Edge Computing”. In: IEEE Internet of Things



                (GC Wkshps). 2018.                                    Journal 6 (2019).
           [49] Q. Pham, L. B. Le, S. Chung, and W. Hwang. “Mobile   [61] P . Wang, C. Yao, Z. Zheng, G. Sun, and L. Song. “Joint


                Edge Computing With Wireless Backhaul:  Joint         Task Assignment, Transmission, and Computing






                Task Of loading and Resource Allocation”. In: IEEE    Resource Allocation  in Multilayer  Mobile  Edge



                Access 7 (2019).                                      Computing Systems”. In: IEEE  Internet  of Things






           [50] M.  A. Hossain and N. Ansari. “Energy Aware La‑       Journal 6 (2019).




                tency Minimization for Network Slicing Enabled   [62] T . X. Tran and D. Pompili. “Joint Task Of loading








                Edge Computing”. In: IEEE Transactions on Green       and Resource Allocation for Multi‑Server Mobile‑



                Communications and Networking (2021). Early           Edge Computing Networks”. In: IEEE Transactions

                Access.                                               on Vehicular Technology 68 (2019).
           [51] L. Feng, Y . Zhou, T . Liu, X. Que, P . Yu, T . Hong, and
                                                                [63] J. Liu and Q. Zhang. “Computation Resource Allo‑
                X. Qiu.   icient   loading for Mission‑









                                                                      cation for Heterogeneous Time‑Critical IoT Ser‑
                Critical IoT Services Using EVT‑Embedded Intel‑       vices in MEC”. In: 2020 IEEE Wireless Communica‑


                ligent  Learning”. In: IEEE  Transactions on Green


                Communications and Networking 5 (2021).               tions and Networking Conference (WCNC). 2020.



                                                                [64] C.‑F. Liu, M. Bennis, M. Debbah, and H. V . Poor.












           [52] J. Ren, G. Yu,  Y . Cai, and Y . He. “Latency  Opti‑



                                                                      “Dynamic Task Of loading and Resource Alloca‑




                mization for Resource Allocation in Mobile‑Edge

                Computation Of loading”. In: IEEE Transactions on     tion for Ultra‑Reliable  Low‑Latency Edge Com‑



                Wireless Communications 17 (2018).                    puting”. In: IEEE Transactions on Communications
                                                                      67 (2019).




           [53] J. Li, H. Gao, T . Lv, and Y . Lu. “Deep reinforce‑






                                                                 [65]  Q.  Fan  and  N.  Ansari.  “Application  Aware
                ment learning based computation of loading and
                resource allocation for MEC”. In: 2018 IEEE Wire‑     Workload  Allocation  for Edge  Computing‑Based

                less Communications and Networking Conference         IoT”. In: IEEE Internet of Things Journal 5 (2018).
                (WCNC). 2018.                                    [66]  L.  Wang,  L.  Jiao,  J.  Li, J.  Gedeon, and  M.  M












           [54] X. Lyu, H. Tian, W. Ni, Y . Zhang, P . Zhang, and     hlhäuser.  “MOERA:  Mobility‑Agnostic  Online




                R. P . Liu.   icient  Admission of Delay‑             Resource Allocation  for Edge  Computing”.  In:






                Sensitive Tasks for Mobile  Edge Computing”. In:      IEEE  Transactions  on  Mobile Computing  18



                IEEE Transactions on Communications 66 (2018).        (2019).

           [55] Y . Wang,  X. Tao, Y . T . Hou, and P . Zhang. “Effec‑   [67]  S.  Jošilo and  G.  Dán.  “Joint  Allocation  of










                tive Capacity‑Based Resource Allocation  in Mo‑       Computing   and   Wireless    Resources    to







                bile Edge Computing With Two‑Stage  Tandem            Autonomous Devices in Mobile Edge Computing”.


                Queues”. In: IEEE  Transactions on Communica‑         In:  Proceedings  of  the  2018  Workshop  on  Mobile


                tions 67 (2019).                                      Edge Communications. 2018.
                                             © International Telecommunication Union, 2021                    77
   86   87   88   89   90   91   92   93   94   95   96