Page 96 - ITU KALEIDOSCOPE, ATLANTA 2019
P. 96
2019 ITU Kaleidoscope Academic Conference
(2019). Benchmarking Robustness in Object [70] Bender, D., & Sartipi, K. (2013). HL7 FHIR: An
Detection: Autonomous Driving when Winter is Agile and RESTful approach to healthcare
Coming. arXiv preprint. information exchange. In Proceedings of the 26th
https://arxiv.org/abs/1907.07484 IEEE international symposium on computer-based
medical systems (pp. 326-331). IEEE.
[63] Filos, A., Farquhar, S., Gomez, A. N., Rudner, T. G. https://doi.org/10.1109/CBMS.2013.6627810
J.. Kenton, Z., Smith, L., Alizadeh, M., de Kroon, A.
& Gal, Y (2019). Benchmarking Bayesian Deep [71] Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J.,
Learning with Diabetic Retinopathy Diagnosis. Appleton, G., Axton, M., Baak, A., ... & Bouwman,
Preprint. Retrieved from J. (2016). The FAIR Guiding Principles for scientific
http://www.cs.ox.ac.uk/people/angelos.filos/publicat data management and stewardship. Scientific data, 3.
ions/diabetic_retinopathy_diagnosis.pdf https://doi.org/10.1038/sdata.2016.18
[64] Parikh, R. B., Obermeyer, Z., & Navathe, A. S. [72] Blum, A., & Hardt, M. (2015). The ladder: A
(2019). Regulation of predictive analytics in reliable leaderboard for machine learning
medicine. Science, 363(6429), 810-812. competitions. arXiv preprint.
https://doi.org/10.1126/science.aaw0029 https://arxiv.org/abs/1502.04585
[65] Finlayson, S. G., Bowers, J. D., Ito, J., Zittrain, J. L., [73] Anderson-Cook, C. M., Myers, K. L., Lu, L.,
Beam, A. L., & Kohane, I. S. (2019). Adversarial Fugate, M. L., Quinlan, K. R., & Pawley, N. (2019).
attacks on medical machine learning. Science, How to Host a Data Competition: Statistical Advice
363(6433), 1287-1289. for Design and Analysis of a Data Competition.
https://doi.org/10.1126/science.aaw4399 arXiv preprint. https://arxiv.org/abs/1901.05356
[66] Lapuschkin, S., Wäldchen, S., Binder, A., [74] Binder, A., Bockmayr, M., Hägele, M., Wienert, S.,
Montavon, G., Samek, W., & Müller, K. R. (2019). Heim, D., Hellweg, K., ... & Treue, D. (2018).
Unmasking Clever Hans predictors and assessing Towards computational fluorescence microscopy:
what machines really learn. Nature communications, Machine learning-based integrated prediction of
10(1), 1096. https://doi.org/10.1038/s41467-019- morphological and molecular tumor profiles. arXiv
08987-4 preprint. https://arxiv.org/abs/1805.11178
[67] Voosen, P. (2017). The AI detectives. Science, [75] Klauschen, F., Müller, K. R., Binder, A., Bockmayr,
357(6346), pp. 22-27. M., Hägele, M., Seegerer, P., ... & Michiels, S.
https://doi.org/10.1126/science.357.6346.22 (2018, October). Scoring of tumor-infiltrating
lymphocytes: From visual estimation to machine
[68] Gebru, T., Morgenstern, J., Vecchione, B., Vaughan, learning. In Seminars in cancer biology (Vol. 52, pp.
J. W., Wallach, H., Daumeé III, H., & Crawford, K. 151-157). Academic Press.
(2018). Datasheets for datasets. arXiv preprint. https://doi.org/10.1016/j.semcancer.2018.07.001
https://arxiv.org/abs/1803.09010
[69] Mildenberger, P., Eichelberg, M., & Martin, E.
(2002). Introduction to the DICOM standard.
European radiology, 12(4), 920-927.
https://doi.org/10.1007/s003300101100
– 76 –