Page 93 - ITU KALEIDOSCOPE, ATLANTA 2019
P. 93
ICT for Health: Networks, standards and innovation
[5] Editorial (2019). Medicine in the digital age. Nature [15] Park, H. S., Rinehart, M. T., Walzer, K. A., Chi, J.
Medicine, 25, 1. https://doi.org/10.1038/s41591-018- T. A., & Wax, A. (2016). Automated detection of P.
0322-1 falciparum using machine learning algorithms with
quantitative phase images of unstained cells. PloS
[6] Editorial (2019) Machine Learning in Medicine. one, 11(9), e0163045.
Nature Materials 18, 407. https://doi.org/10.1371/journal.pone.0163045
https://doi.org/10.1038/s41563-019-0360-1
[16] Esteva, A., Kuprel, B., Novoa, R. A., Ko, J.,
[7] Editorial (2019). A digital (r)evolution: introducing Swetter, S. M., Blau, H. M., & Thrun, S. (2017).
The Lancet Digital Health. The Lancet Digital Dermatologist-level classification of skin cancer
Health, 1(1). https://doi.org/10.1016/S2589- with deep neural networks. Nature, 542(7639), 115.
7500(19)30010-X https://doi.org/10.1038/nature21056
[8] Trendall, S. (2019). NHSX to create policy guide for [17] Ching, T., Himmelstein, D. S., Beaulieu-Jones, B.
use of AI in healthcare. Public Technology. K., Kalinin, A. A., Do, B. T., Way, G. P., ... & Xie,
Retrieved from W. (2018). Opportunities and obstacles for deep
https://www.publictechnology.net/articles/news/nhs learning in biology and medicine. Journal of The
x-create-policy-guide-use-ai-healthcare Royal Society Interface, 15(141), 20170387.
https://doi.org/10.1098/rsif.2017.0387
[9] Dunbar, K. (2019). New guidance for AI in
screening. Public Health England Screening Blog. [18] Norgeot, B., Glicksberg, B. S., Trupin, L., Lituiev,
Retrieved from D., Gianfrancesco, M., Oskotsky, B., ... & Butte, A.
https://phescreening.blog.gov.uk/2019/03/14/new- J. (2019). Assessment of a deep learning model
guidance-for-ai-in-screening based on electronic health record data to forecast
clinical outcomes in patients with rheumatoid
[10] UK Department of Health and Social Care (2019). arthritis. JAMA network open, 2(3), e190606-
New code of conduct for artificial intelligence (AI) e190606.
systems used by the NHS. GOV.UK. Retrieved from https://doi.org/10.1001/jamanetworkopen.2019.0606
https://www.gov.uk/government/news/new-code-of-
conduct-for-artificial-intelligence-ai-systems-used- [19] Meiring, C., Dixit, A., Harris, S., MacCallum, N. S.,
by-the-nhs Brealey, D. A., Watkinson, P. J., ... & Singer, M.
(2018). Optimal intensive care outcome prediction
[11] Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A., over time using machine learning. PloS one, 13(11),
Ciompi, F., Ghafoorian, M., ... & Sánchez, C. I. e0206862.
(2017). A survey on deep learning in medical image https://doi.org/10.1371/journal.pone.0206862
analysis. Medical image analysis, 42, 60-88.
https://doi.org/10.1016/j.media.2017.07.005 [20] Nemati, S., Holder, A., Razmi, F., Stanley, M. D.,
Clifford, G. D., & Buchman, T. G. (2018). An
[12] Shen, D., Wu, G., & Suk, H. I. (2017). Deep Interpretable Machine Learning Model for Accurate
learning in medical image analysis. Annual review of Prediction of Sepsis in the ICU. Critical care
biomedical engineering, 19, 221-248. medicine, 46(4), 547-553.
https://doi.org/10.1146/annurev-bioeng-071516- https://dx.doi.org/10.1097/CCM.0000000000002936
044442
[21] Strodthoff, N., & Strodthoff, C. (2019). Detecting
[13] Esteva, A., Robicquet, A., Ramsundar, B., and interpreting myocardial infarction using fully
Kuleshov, V., DePristo, M., Chou, K., Cui, C., convolutional neural networks. Physiological
Corrado, G., Thrun, S. & Dean, J. (2019). A guide to measurement, 40(1). https://doi.org/10.1088/1361-
deep learning in healthcare. Nature medicine, 25(1), 6579/aaf34d
24. https://doi.org/10.1038/s41591-018-0316-z
[22] Hannun, A. Y., Rajpurkar, P., Haghpanahi, M.,
[14] Setio, A. A. A., Traverso, A., De Bel, T., Berens, M. Tison, G. H., Bourn, C., Turakhia, M. P., & Ng, A.
S., van den Bogaard, C., Cerello, P., ... & van der Y. (2019). Cardiologist-level arrhythmia detection
Gugten, R. (2017). Validation, comparison, and and classification in ambulatory electrocardiograms
combination of algorithms for automatic detection of using a deep neural network. Nature medicine,
pulmonary nodules in computed tomography 25(1), 65. https://doi.org/10.1038/s41591-018-0268-
images: the LUNA16 challenge. Medical image 3
analysis, 42, 1-13.
https://doi.org/10.1016/j.media.2017.06.015
– 73 –