Page 93 - ITU KALEIDOSCOPE, ATLANTA 2019
P. 93

ICT for Health: Networks, standards and innovation




           [5]   Editorial (2019). Medicine in the digital age. Nature  [15]  Park, H. S., Rinehart, M. T., Walzer, K. A., Chi, J.
                 Medicine, 25, 1. https://doi.org/10.1038/s41591-018-  T. A., & Wax, A. (2016). Automated detection of P.
                 0322-1                                             falciparum using machine learning algorithms with
                                                                    quantitative phase images of unstained cells. PloS
           [6]   Editorial (2019) Machine Learning in Medicine.     one, 11(9), e0163045.
                 Nature Materials 18, 407.                          https://doi.org/10.1371/journal.pone.0163045
                 https://doi.org/10.1038/s41563-019-0360-1
                                                              [16]  Esteva, A., Kuprel, B., Novoa, R. A., Ko, J.,
           [7]   Editorial (2019). A digital (r)evolution: introducing  Swetter, S. M., Blau, H. M., & Thrun, S. (2017).
                 The Lancet Digital Health. The Lancet Digital      Dermatologist-level classification of skin cancer
                 Health, 1(1). https://doi.org/10.1016/S2589-       with deep neural networks. Nature, 542(7639), 115.
                 7500(19)30010-X                                    https://doi.org/10.1038/nature21056

           [8]   Trendall, S. (2019). NHSX to create policy guide for  [17] Ching, T., Himmelstein, D. S., Beaulieu-Jones, B.
                 use of AI in healthcare. Public Technology.        K., Kalinin, A. A., Do, B. T., Way, G. P., ... & Xie,
                 Retrieved from                                     W. (2018). Opportunities and obstacles for deep
                 https://www.publictechnology.net/articles/news/nhs  learning in biology and medicine. Journal of The
                 x-create-policy-guide-use-ai-healthcare            Royal Society Interface, 15(141), 20170387.
                                                                    https://doi.org/10.1098/rsif.2017.0387
           [9]   Dunbar, K. (2019). New guidance for AI in
                 screening. Public Health England Screening Blog.  [18]  Norgeot, B., Glicksberg, B. S., Trupin, L., Lituiev,
                 Retrieved from                                     D., Gianfrancesco, M., Oskotsky, B., ... & Butte, A.
                 https://phescreening.blog.gov.uk/2019/03/14/new-   J. (2019). Assessment of a deep learning model
                 guidance-for-ai-in-screening                       based on electronic health record data to forecast
                                                                    clinical outcomes in patients with rheumatoid
           [10]  UK Department of Health and Social Care (2019).    arthritis. JAMA network open, 2(3), e190606-
                 New code of conduct for artificial intelligence (AI)  e190606.
                 systems used by the NHS. GOV.UK. Retrieved from    https://doi.org/10.1001/jamanetworkopen.2019.0606
                 https://www.gov.uk/government/news/new-code-of-
                 conduct-for-artificial-intelligence-ai-systems-used-  [19]  Meiring, C., Dixit, A., Harris, S., MacCallum, N. S.,
                 by-the-nhs                                         Brealey, D. A., Watkinson, P. J., ... & Singer, M.
                                                                    (2018). Optimal intensive care outcome prediction
           [11]  Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A.,  over time using machine learning. PloS one, 13(11),
                 Ciompi, F., Ghafoorian, M., ... & Sánchez, C. I.   e0206862.
                 (2017). A survey on deep learning in medical image  https://doi.org/10.1371/journal.pone.0206862
                 analysis. Medical image analysis, 42, 60-88.
                 https://doi.org/10.1016/j.media.2017.07.005  [20]  Nemati, S., Holder, A., Razmi, F., Stanley, M. D.,
                                                                    Clifford, G. D., & Buchman, T. G. (2018). An
           [12]  Shen, D., Wu, G., & Suk, H. I. (2017). Deep        Interpretable Machine Learning Model for Accurate
                 learning in medical image analysis. Annual review of  Prediction of Sepsis in the ICU. Critical care
                 biomedical engineering, 19, 221-248.               medicine, 46(4), 547-553.
                 https://doi.org/10.1146/annurev-bioeng-071516-     https://dx.doi.org/10.1097/CCM.0000000000002936
                 044442
                                                              [21]  Strodthoff, N., & Strodthoff, C. (2019). Detecting
           [13]  Esteva, A., Robicquet, A., Ramsundar, B.,          and interpreting myocardial infarction using fully
                 Kuleshov, V., DePristo, M., Chou, K., Cui, C.,     convolutional neural networks. Physiological
                 Corrado, G., Thrun, S. & Dean, J. (2019). A guide to  measurement, 40(1). https://doi.org/10.1088/1361-
                 deep learning in healthcare. Nature medicine, 25(1),  6579/aaf34d
                 24. https://doi.org/10.1038/s41591-018-0316-z
                                                              [22]  Hannun, A. Y., Rajpurkar, P., Haghpanahi, M.,
           [14]  Setio, A. A. A., Traverso, A., De Bel, T., Berens, M.  Tison, G. H., Bourn, C., Turakhia, M. P., & Ng, A.
                 S., van den Bogaard, C., Cerello, P., ... & van der  Y. (2019). Cardiologist-level arrhythmia detection
                 Gugten, R. (2017). Validation, comparison, and     and classification in ambulatory electrocardiograms
                 combination of algorithms for automatic detection of  using a deep neural network. Nature medicine,
                 pulmonary nodules in computed tomography           25(1), 65. https://doi.org/10.1038/s41591-018-0268-
                 images: the LUNA16 challenge. Medical image        3
                 analysis, 42, 1-13.
                 https://doi.org/10.1016/j.media.2017.06.015








                                                           – 73 –
   88   89   90   91   92   93   94   95   96   97   98