Page 95 - ITU KALEIDOSCOPE, ATLANTA 2019
P. 95

ICT for Health: Networks, standards and innovation




           [42]  DIN Deutsches Institut für Normung e. V. (2019a).  [52]  Collins, G. S., & Moons, K. G. (2019). Reporting of
                 DIN to develop AI standardization roadmap. DIN     artificial intelligence prediction models. The Lancet,
                 Press Releases. Retrieved from                     393(10181), 1577-1579.
                 https://www.din.de/en/din-and-our-                 https://doi.org/10.1016/S0140-6736(19)30037-6
                 partners/press/press-releases/din-to-develop-ai-
                 standardization-roadmap-330542               [53]  Khoram, E., Chen, A., Liu, D., Ying, L., Wang, Q.,
                                                                    Yuan, M., & Yu, Z. (2019). Nanophotonic media for
           [43]  DIN Deutsches Institut für Normung e. V. (2018).   artificial neural inference. Photonics Research, 7(8),
                 Interdisciplinary DIN Working Committee            823-827. https://doi.org/10.1364/PRJ.7.000823
                 “Artificial Intelligence”. Retrieved from
                 https://www.din.de/en/innovation-and-        [54]  International Medical Device Regulators Forum
                 research/artificial-intelligence/ai-working-committee  (2017). Software as a Medical Device (SaMD):
                                                                    Clinical Evaluation. Retrieved from
           [44]  DIN Deutsches Institut für Normung e. V. (2019).   http://www.imdrf.org/docs/imdrf/final/technical/imd
                 DIN SPEC 92001-1:2019-04 Artificial Intelligence -  rf-tech-170921-samd-n41-clinical-evaluation_1.pdf
                 Life Cycle Processes and Quality Requirements -
                 Part 1: Quality Meta Model.                  [55]  The English National Institute for Health and Care
                 https://dx.doi.org/10.31030/3050203                Excellence (2019). Evidence Standards Framework
                                                                    for Digital Health Technologies. Retrieved from
           [45]  DIN Deutsches Institut für Normung e. V. (2019).   https://www.nice.org.uk/Media/Default/About/what-
                 DIN SPECs on Artificial Intelligence. Retrieved    we-do/our-programmes/evidence-standards-
                 from https://www.din.de/en/innovation-and-         framework/digital-evidence-standards-
                 research/artificial-intelligence/ai-din-spec       framework.pdf


           [46]  Partnership on AI to Benefit People and Society  [56]  Lemm, S., Blankertz, B., Dickhaus, T., & Müller, K.
                 (2019). Retrieved from                             R. (2011). Introduction to machine learning for brain
                 https://www.partnershiponai.org/                   imaging. Neuroimage, 56(2), 387-399.
                                                                    https://doi.org/10.1016/j.neuroimage.2010.11.004
           [47]  Askell, A., Brundage, M., & Hadfield, G. (2019).
                 The Role of Cooperation in Responsible AI    [57]  Jacobs, C., & van Ginneken, B. (2019). Google’s
                 Development. arXiv preprint.                       lung cancer AI: a promising tool that needs further
                 https://arxiv.org/abs/1907.04534                   validation. Nature Reviews Clinical Oncology, 1.
                                                                    https://doi.org/10.1038/s41571-019-0248-7
           [48]  Askell, A., Brundage, M., & Clark, J. (2019). Why
                 Responsible AI Development Needs Cooperation on  [58]  Couzin-Frankel, J. (2019). Medicine contends with
                 Safety. OpenAI Blog. Retrieved from                how to use artificial intelligence. Science,
                 https://openai.com/blog/cooperation-on-safety/     364(6446), 1119-1120.
                                                                    https://doi.org/10.1126/science.364.6446.1119
           [49]  Collins, G. S., Reitsma, J. B., Altman, D. G., &
                 Moons, K. G. (2015). Transparent reporting of a  [59]  Editorial (July 2019). Walking the tightrope of
                 multivariable prediction model for individual      artificial intelligence guidelines in clinical practice.
                 prognosis or diagnosis (TRIPOD): the TRIPOD        The Lancet Digital Health, 1(3), Pe100.
                 statement. BMC medicine, 13(1), 1.                 https://doi.org/10.1016/S2589-7500(19)30063-9
                 https://doi.org/10.1186/s12916-014-0241-z
                                                              [60]  Saez-Rodriguez, J., Costello, J. C., Friend, S. H.,
           [50]  Moons, K. G., Altman, D. G., Reitsma, J. B.,       Kellen, M. R., Mangravite, L., Meyer, P., ... &
                 Ioannidis, J. P., Macaskill, P., Steyerberg, E. W., ...  Stolovitzky, G. (2016). Crowdsourcing biomedical
                 & Collins, G. S. (2015). Transparent Reporting of a  research: leveraging communities as innovation
                 multivariable prediction model for Individual      engines. Nature Reviews Genetics, 17(8), 470.
                 Prognosis or Diagnosis (TRIPOD): explanation and   https://doi.org/10.1038/nrg.2016.69
                 elaboration. Annals of internal medicine, 162(1),
                 W1-W73. https://doi.org/10.7326/M14-0698     [61]  Maier-Hein, L., Eisenmann, M., Reinke, A., Onogur,
                                                                    S., Stankovic, M., Scholz, P., ... & Feldmann, C.
           [51]  Heus, P., Damen, J. A., Pajouheshnia, R., Scholten,  (2018). Why rankings of biomedical image analysis
                 R. J., Reitsma, J. B., Collins, G. S., ... & Hooft, L.  competitions should be interpreted with care. Nature
                 (2019). Uniformity in measuring adherence to       communications, 9(1), 5217.
                 reporting guidelines: the example of TRIPOD for    https://doi.org/10.1038/s41467-018-07619-7
                 assessing completeness of reporting of prediction
                 model studies. BMJ open, 9(4), e025611.      [62]  Michaelis, C., Mitzkus, B., Geirhos, R., Rusak, E.,
                 https://doi.org/10.1136/bmjopen-2018-025611        Bringmann, O., Ecker, A. S., ... & Brendel, W.





                                                           – 75 –
   90   91   92   93   94   95   96   97   98   99   100