Page 93 - Proceedings of the 2017 ITU Kaleidoscope
P. 93
Challenges for a data-driven society
large amount of efforts should be made to generate more
useful reduced models. Besides, different reduced models
have different domain space, the exploration of the boundary
for each reduced model is necessary for generating reliable
and high quality process knowledge. These regime
conditions can be determined by physical driven or data
driven methods.
The comprehensive use of data from reduced models can
extract the global and local knowledge of the manufacturing
process. The interesting topics can be robustness analysis,
global and local sensitivity analysis.
REFERENCES
[1] Brecher C (ed) (2012) Integrative production technology for
high-wage countries, Springer, Berlin, Heidelberg
[2] John K.Hunter, asymptotic analysis and singular perturbation:
Department of mathematics, University of California at Davis,
February, 2004
[3] J.R. King and D.S. Riley. Asymptotic solutions to the Stefan
problem with a constant heat source at the moving boundary.
The Royal Society of London, 456(1997): 1163-1174, 2000
[4] Georg Vossen, Torsten Hermanns and Jens Schüttler, Analysis
and optimal control for free melt flow boundaries in laser
cutting with distributed radiation, Wiley Online library,
ZAMMZ.Angew.Math.Mech.,1-20(2013)/DOI
10.1002/zamm.201200213
[5] W. Schulz and J.Michel Freie Randwertaufgaben der
thermischen Materialbearbeitung: Inertiale Mannigfltigkeiten
und Dimension des Phasenraums
[6] W.Schulz. Die Dynamik des thermischen Abtrags mit
Grenzschichtcharakter. PhD Thesis, Aachen: Shaker-
Verlag,2003. Habilitationsschrift, RWTH Aachen,1998
[7] E.Buckingham. On physically similar systems; illustration of
the use of dimensional equations. Physical Review 4, 4(4):
345-376, 1914
[8]W.Schulz, D.Becker, J.Franke, R.Kemmerling and G.Herziger.
J.Phys. D:Appl. Phys. 26 (1993) 1357-1363. Printed in the UK.
Heat conduction losses in laser cutting of metals
[9] Huanrong Li, Zhendong Luo, Jing Chen, Numerical simulation
based on POD for two-dimensional solute transport problems,
Applied Mathematical Modelling 35 (2011) 2589-2498
[10] L. Cordier and M. Bergmann. Proper orthogonal
decomposition: an overview. Post processing of Experimental
and numerical Data, Lecture Series 2003/2004, von Karman
Institut for Fluid Dynamics, pages 1-45, 2003
[11] Anindya Chatterjee, An introduction to the proper orthogonal
decomposition, Special section: computational science,
current science, vol. 78, No. 7, 10 April 2000
[12] R. Reinhard, C. Büscher, T. Meisen, D. Schilberg and S.
Jeschke. (2012) Virtual Production Intelligence – A
Contribution to the Digital Factory. In: Hutchison D, Kanade
T, Kittler J et al. (eds) Intelligent Robotics and Applications,
vol 7506. Springer Berlin Heidelberg, Berlin, Heidelberg, pp
706–715
[13] H. Tercan, T. Al Khawli, U. Eppelt, C. Büscher, T. Meisen and
S. Jeschke (2017). Improving the laser cutting process design
by machine learning techniques. Production Engineering,
2(11), 195-203.
– 77 –