Page 93 - Proceedings of the 2017 ITU Kaleidoscope
P. 93

Challenges for a data-driven society




           large  amount  of  efforts  should  be  made  to  generate  more
           useful  reduced  models.  Besides,  different  reduced  models
           have different domain space, the exploration of the boundary
           for each reduced model is necessary for generating reliable
           and  high  quality  process  knowledge.  These  regime
           conditions  can  be  determined  by  physical  driven  or  data
           driven methods.
           The  comprehensive  use  of  data  from  reduced  models  can
           extract the global and local knowledge of the manufacturing
           process. The interesting topics can be robustness analysis,
           global and local sensitivity analysis.

                            REFERENCES
           [1]  Brecher  C  (ed)  (2012)  Integrative  production  technology  for
              high-wage countries, Springer, Berlin, Heidelberg
           [2] John K.Hunter, asymptotic analysis and singular perturbation:
              Department of mathematics, University of California at Davis,
              February, 2004
           [3] J.R. King and D.S. Riley. Asymptotic solutions to the Stefan
              problem with a constant heat source at the moving boundary.
              The Royal Society of London, 456(1997): 1163-1174, 2000
           [4] Georg Vossen, Torsten Hermanns and Jens Schüttler, Analysis
              and  optimal  control  for  free  melt  flow  boundaries  in  laser
              cutting  with  distributed  radiation,  Wiley  Online  library,
              ZAMMZ.Angew.Math.Mech.,1-20(2013)/DOI
              10.1002/zamm.201200213
           [5]  W.  Schulz  and  J.Michel  Freie  Randwertaufgaben  der
              thermischen Materialbearbeitung: Inertiale Mannigfltigkeiten
              und Dimension des Phasenraums
           [6]  W.Schulz.  Die  Dynamik  des  thermischen  Abtrags  mit
              Grenzschichtcharakter.  PhD  Thesis,  Aachen:  Shaker-
              Verlag,2003. Habilitationsschrift, RWTH Aachen,1998
           [7] E.Buckingham. On physically similar systems; illustration of
              the  use  of  dimensional  equations.  Physical  Review  4,  4(4):
              345-376, 1914
           [8]W.Schulz, D.Becker, J.Franke, R.Kemmerling and G.Herziger.
              J.Phys. D:Appl. Phys. 26 (1993) 1357-1363. Printed in the UK.
              Heat conduction losses in laser cutting of metals
           [9] Huanrong Li, Zhendong Luo, Jing Chen, Numerical simulation
              based on POD for two-dimensional solute transport problems,
              Applied Mathematical Modelling 35 (2011) 2589-2498
           [10]  L.  Cordier  and  M.  Bergmann.  Proper  orthogonal
              decomposition: an overview. Post processing of Experimental
              and numerical Data, Lecture Series 2003/2004, von Karman
              Institut for Fluid Dynamics, pages 1-45, 2003
           [11] Anindya Chatterjee, An introduction to the proper orthogonal
              decomposition,  Special  section:  computational  science,
              current science, vol. 78, No. 7, 10 April 2000

           [12]  R.  Reinhard,  C.  Büscher,  T.  Meisen,  D.  Schilberg  and  S.
              Jeschke.  (2012)  Virtual  Production  Intelligence  –  A
              Contribution to the Digital Factory. In: Hutchison D, Kanade
              T, Kittler J et al. (eds) Intelligent Robotics and Applications,
              vol 7506. Springer Berlin Heidelberg, Berlin, Heidelberg, pp
              706–715
           [13] H. Tercan, T. Al Khawli, U. Eppelt, C. Büscher, T. Meisen and
              S. Jeschke (2017). Improving the laser cutting process design
              by  machine  learning  techniques.  Production  Engineering,
              2(11), 195-203.










                                                          – 77 –
   88   89   90   91   92   93   94   95   96   97   98