Page 90 - Proceedings of the 2017 ITU Kaleidoscope
P. 90

2017 ITU Kaleidoscope Academic Conference

























                                    Fig. 1. Workflow to enrich sparse data to dense data
           performance  of  machines  or  sensors.  The  computer  aided   enriched  dense  enough  for  data-driven  decision  making
           calculation,  also  known  as  numerical  simulation,  is  a   extraction within a short phase.
           powerful tool to generate sampling datasets. However, the   The  model  reduction  procedure  adopts  a  top-to-down
           complex  numerical  simulation  could  be  time-consuming   approach  and  starts  from  the  original  partial  differential
           because of the high resolution and complex process physics.   equations and derives approximated analytical solutions or a
                                                              set  of  ordinary  equations  using  many  mathematical
              3. ENRICHING SPARSE DATA BY REDUCED             approaches,  physical  and  phenomenological  approaches,
                               MODELS                         numerical  approaches  and  data  driven  model  reduction
                                                              methods.  Especially,  there  are  several  model  reduction
           Generally  speaking,  the  reduced  models  can  enrich  the   techniques which are convenient enough to use and worth
           sparse data from two aspects. On the one hand, the reduced   reviewing.
           models decrease the required data volume dramatically. The   3.1 Perturbation analysis
           “sparse  data”  become  “dense  data”  because  of  the
           compendious dimensionality. On the other hand, the reduced   The  objective  of  perturbation  theory  is  to  determine  the
           models are also characterized by their convenient solvability,   behavior of the solution when one variable tends to be very
           millions of datasets can be generated from reduced models   small, which can lead to the split of two part of solutions for
           in acceptable duration.                            complex  system.  One  part  is  the  temporal  solution  and
           The workflow to enrich sparse data into dense data are shown   another  part  is  the  long  term  asymptotic  solution.  This
           in  Figure  1.  Firstly,  the  data  is  extracted  from  divergent   separation of system solutions result in the reduction for the
           sources  in  real  manufacturing  processes  and  experimental   models. The typical application of this perturbation theory
           measurements.  Different  types  of  sensors,  diagnosis   lies in the fields involving differential equations as well as a
           techniques  and  design  of  experiments  are  intensively   series of engineering problems [2] [3]. Vossen et al. used the
           operated to accumulate the original sparse data. At this stage,   perturbation  and  asymptotic  analysis  to  describe  the
           the  data  are  featured  by  its  high  volume,  insufficient   dynamical  behaviors  of  the  free  boundaries  of  the  melt
           dimensionality, heterogeneous distribution and irregular data   during  the  laser  cutting  process  considering  the  spatially
           format. Thereafter, the massive mathematical and physical   distributed  laser  radiation.  A  reduced  model  which  can
           modelling work for the complex  manufacturing process is   generate  results  at  real  time  scale  was  derived  by
           performed and validated by the sparse data in the first stage.   perturbation  analysis  for  the  purpose  of  predicting  the
           From  the  well-built  complicated  models,  the  full   product roughness [4].
           dimensional  parameters  will  be  involved  and  the  data
           generated  from  multifarious  models  is  equipped  with   3.2 Inertia and central Manifold analysis
           standard data format. Since the sampling process by complex
           models is time consuming, model reduction techniques are   The  inertial  manifolds  are  connected  with  the  long  term
           applied to generate the fast and frugal reduced models and   behavior of the solutions of dissipative dynamical systems.
           avoid the unnecessary complexity. The reduced models are   The reduced phase space of ordinary differential equations
           derived to avoid any unnecessary complexity and to reduce   and  partial  differential  equations  in  the  long  time  limit  is
           the computation time of large-scale dynamical systems by   named as central or inertial manifold. Schulz et al. derived a
           inducing approximations of much lower dimensions which   reduced model by applying inertial manifold method. This
           can  produce  nearly  the  same  input-output  response   reduced model can calculate the thermal behavior in laser
           characteristics. Meanwhile, to ensure the accuracy and the   manufacturing processes very fast [5, 6].
           applicability on the specific context, the reduced models are
           also calibrated and validated by the measured sparse data.   3.3 Buckingham Pi theory
           These reduced models can simulate the complex system by
           preventing redundant calculation, so the sparse data can be




                                                          – 74 –
   85   86   87   88   89   90   91   92   93   94   95