Page 202 - Kaleidoscope Academic Conference Proceedings 2021
P. 202
2021 ITU Kaleidoscope Academic Conference
[25] B. Han, J. Lianghai, and H. D. Schotten, “Slice as an OpenFlow multi-tenant networks,” Comput. Networks,
Evolutionary Service: Genetic Optimization for Inter- vol. 115, pp. 29–41, 2017.
Slice Resource Management in 5G Networks,” IEEE
Access, vol. 6, pp. 33137–33147, Jun. 2018 [37] Y. Shi, Y. E. Sagduyu, and T. Erpek, “Reinforcement
Learning for Dynamic Resource Optimization in 5G
[26] D. Bega, M. Gramaglia, A. Banchs, V. Sciancalepore, Radio Access Network Slicing,” IEEE Int. Work.
K. Samdanis, and X. Costa-Perez, “Optimising 5G Comput. Aided Model. Des. Commun. Links Networks,
infrastructure markets: The business of network CAMAD, vol. 2020-September, Sep. 2020.
slicing,” Proc. - IEEE INFOCOM, Oct. 2017.
[38] B. Han et al., “Admission and Congestion Control for
[27] Y. Abiko, T. Saito, D. Ikeda, K. Ohta, T. Mizuno, and 5G Network Slicing,” 2018 IEEE Conf. Stand.
H. Mineno, “Flexible Resource Block Allocation to Commun. Networking, CSCN 2018, Dec. 2018.
Multiple Slices for Radio Access Network Slicing Using
Deep Reinforcement Learning,” IEEE Access, vol. 8, [39] M. Bonfim, M. Santos, K. Dias, and S. Fernandes, “A
pp. 68183–68198, 2020. real-time attack defense framework for 5G network
slicing,” Softw. - Pract. Exp., vol. 50, no. 7, pp. 1228–
[28] C. Qi, Y. Hua, R. Li, Z. Zhao, and H. Zhang, “Deep 1257, Jul. 2020.
Reinforcement Learning With Discrete Normalized
Advantage Functions for Resource Management in [40] L. Fernandez Maimo, A. L. Perales Gomez, F. J. Garcia
Network Slicing,” IEEE Commun. Lett., vol. 23, no. 8, Clemente, M. Gil Perez, and G. Martinez Perez, “A Self-
pp. 1337–1341, Jun. 2019. Adaptive Deep Learning-Based System for Anomaly
Detection in 5G Networks,” IEEE Access, vol. 6, pp.
[29] Y. Kim, S. Kim, and H. Lim, “Reinforcement Learning 7700–7712, Feb. 2018.
Based Resource Management for Network Slicing,”
Appl. Sci. 2019, Vol. 9, Page 2361, vol. 9, no. 11, p. [41] K. Vikranth, A. J. Shathik, and K. Krishna Prasad,
2361, Jun. 2019. “Future enhancements and propensities in forthcoming
communication system-5G Network Technology,” J.
[30] J. Koo, V. B. Mendiratta, M. R. Rahman, and A. Walid, Phys, p. 12006, 2020.
“Deep Reinforcement Learning for Network Slicing
with Heterogeneous Resource Requirements and Time
Varying Traffic Dynamics,” 15th Int. Conf. Netw. Serv.
Manag. CNSM 2019, Oct. 2019.
[31] X. Wang and T. Zhang, “Reinforcement Learning Based
Resource Allocation for Network Slicing in 5G C-
RAN,” 2019 Comput. Commun. IoT Appl. ComComAp
2019, pp. 106–111, Oct. 2019.
[32] H. Wang, Y. Wu, G. Min, J. Xu, and P. Tang, “Data-
driven dynamic resource scheduling for network slicing:
A Deep reinforcement learning approach,” Inf. Sci.
(Ny)., vol. 498, pp. 106–116, Sep. 2019.
[33] Y. Hua, R. Li, Z. Zhao, H. Zhang, and X. Chen, “GAN-
based deep distributional reinforcement learning for
resource management in network slicing,” 2019 IEEE
Glob. Commun. Conf. GLOBECOM 2019 - Proc., Dec.
2019.
[34] L. Zhao and L. Li, “Reinforcement learning for resource
mapping in 5G network slicing,” 2020 5th Int. Conf.
Comput. Commun. Syst. ICCCS 2020, pp. 869–873,
May 2020.
[35] G. Yang, Q. Liu, X. Zhou, Y. Qian, and W. Wu, “Two-
tier resource allocation in dynamic network slicing
paradigm with deep reinforcement learning,” 2019
IEEE Glob. Commun. Conf. GLOBECOM 2019 - Proc.,
Dec. 2019.
[36] S. d’Oro, L. Galluccio, P. Mertikopoulos, G. Morabito,
and S. Palazzo, “Auction-based resource allocation in
– 140 –