Page 202 - Kaleidoscope Academic Conference Proceedings 2021
P. 202

2021 ITU Kaleidoscope Academic Conference




           [25] B. Han, J. Lianghai, and H. D. Schotten, “Slice as an   OpenFlow multi-tenant networks,” Comput. Networks,
               Evolutionary  Service:  Genetic  Optimization  for  Inter-   vol. 115, pp. 29–41, 2017.
               Slice  Resource  Management  in  5G  Networks,”  IEEE
               Access, vol. 6, pp. 33137–33147, Jun. 2018     [37] Y. Shi, Y. E. Sagduyu, and T. Erpek, “Reinforcement
                                                                  Learning  for  Dynamic  Resource  Optimization  in  5G
           [26] D. Bega, M. Gramaglia, A. Banchs, V. Sciancalepore,   Radio  Access  Network  Slicing,”  IEEE  Int.  Work.
               K.  Samdanis,  and  X.  Costa-Perez,  “Optimising  5G   Comput. Aided Model. Des. Commun. Links Networks,
               infrastructure  markets:  The  business  of  network   CAMAD, vol. 2020-September, Sep. 2020.
               slicing,” Proc. - IEEE INFOCOM, Oct. 2017.
                                                              [38] B. Han et al., “Admission and Congestion Control for
           [27] Y. Abiko, T. Saito, D. Ikeda, K. Ohta, T. Mizuno, and   5G  Network  Slicing,”  2018  IEEE  Conf.  Stand.
               H.  Mineno,  “Flexible  Resource  Block  Allocation  to   Commun. Networking, CSCN 2018, Dec. 2018.
               Multiple Slices for Radio Access Network Slicing Using
               Deep  Reinforcement  Learning,”  IEEE  Access,  vol. 8,   [39] M. Bonfim, M. Santos, K. Dias, and S. Fernandes, “A
               pp. 68183–68198, 2020.                             real-time  attack  defense  framework  for  5G  network
                                                                  slicing,” Softw. - Pract. Exp., vol. 50, no. 7, pp. 1228–
           [28] C. Qi, Y. Hua, R. Li, Z. Zhao, and H. Zhang, “Deep   1257, Jul. 2020.
               Reinforcement  Learning  With  Discrete  Normalized
               Advantage  Functions  for  Resource  Management  in   [40] L. Fernandez Maimo, A. L. Perales Gomez, F. J. Garcia
               Network Slicing,” IEEE Commun. Lett., vol. 23, no. 8,   Clemente, M. Gil Perez, and G. Martinez Perez, “A Self-
               pp. 1337–1341, Jun. 2019.                          Adaptive  Deep  Learning-Based  System  for  Anomaly
                                                                  Detection in 5G Networks,” IEEE Access, vol. 6, pp.
           [29] Y. Kim, S. Kim, and H. Lim, “Reinforcement Learning   7700–7712, Feb. 2018.
               Based  Resource  Management  for  Network  Slicing,”
               Appl. Sci. 2019, Vol. 9, Page 2361, vol. 9, no. 11, p.   [41] K.  Vikranth,  A.  J.  Shathik,  and  K.  Krishna  Prasad,
               2361, Jun. 2019.                                   “Future enhancements and propensities in forthcoming
                                                                  communication  system-5G  Network  Technology,”  J.
           [30] J. Koo, V. B. Mendiratta, M. R. Rahman, and A. Walid,   Phys, p. 12006, 2020.
               “Deep  Reinforcement  Learning  for  Network  Slicing
               with Heterogeneous Resource Requirements and Time
               Varying Traffic Dynamics,” 15th Int. Conf. Netw. Serv.
               Manag. CNSM 2019, Oct. 2019.

           [31] X. Wang and T. Zhang, “Reinforcement Learning Based
               Resource  Allocation  for  Network  Slicing  in  5G  C-
               RAN,” 2019 Comput. Commun. IoT Appl. ComComAp
               2019, pp. 106–111, Oct. 2019.

           [32] H. Wang, Y. Wu, G. Min, J. Xu, and P. Tang, “Data-
               driven dynamic resource scheduling for network slicing:
               A  Deep  reinforcement  learning  approach,”  Inf.  Sci.
               (Ny)., vol. 498, pp. 106–116, Sep. 2019.

           [33] Y. Hua, R. Li, Z. Zhao, H. Zhang, and X. Chen, “GAN-
               based  deep  distributional  reinforcement  learning  for
               resource management in network slicing,” 2019 IEEE
               Glob. Commun. Conf. GLOBECOM 2019 - Proc., Dec.
               2019.

           [34] L. Zhao and L. Li, “Reinforcement learning for resource
               mapping  in  5G  network  slicing,”  2020  5th  Int.  Conf.
               Comput.  Commun.  Syst.  ICCCS  2020,  pp.  869–873,
               May 2020.

           [35] G. Yang, Q. Liu, X. Zhou, Y. Qian, and W. Wu, “Two-
               tier  resource  allocation  in  dynamic  network  slicing
               paradigm  with  deep  reinforcement  learning,”  2019
               IEEE Glob. Commun. Conf. GLOBECOM 2019 - Proc.,
               Dec. 2019.

           [36] S. d’Oro, L. Galluccio, P. Mertikopoulos, G. Morabito,
               and S. Palazzo, “Auction-based resource allocation in




                                                          – 140 –
   197   198   199   200   201   202   203   204   205   206   207