Page 93 - ITU Journal Future and evolving technologies Volume 2 (2021), Issue 6 – Wireless communication systems in beyond 5G era
P. 93

ITU Journal on Future and Evolving Technologies, Volume 2 (2021), Issue 6




          [65] NGMN. “Winner II Channel Models, Standard IST‑  [77] Z. Mlika, E. Driouch, and W. Ajib. “User Association
               4‑027756 WINNER II D1.1.2 v1.2”. In: Accessed         Under SINR Constraints in HetNets: Upper Bound
               on: 2019‑05‑18. Sept., 2007. URL: https://www.        and  NP‑Hardness”.  In:  IEEE  Communications  Let‑
               cept.org/files/8339/winner2%20-%20final%              ters  22.8  (Aug.  2018),  pp.  1672–1675.  DOI:  10 .
               20report.pdf.                                         1109/LCOMM.2018.2840714.
          [66] Y. Zhang, C. Lee, D. Niyato, and P. Wang. “Auction  [78] T .  Hoessler,  P .  Schulz,  E.  A.  Jorswieck,  M.  Simsek,
               Approaches for Resource Allocation in Wireless        and  G.  P .  Fettweis.  “Stable  Matching  for  Wireless
               Systems: A Survey”. In: IEEE Communications Sur‑      URLLC  in  Multi‑Cellular,  Multi‑User  Systems”.  In:
               veys Tutorials 15.3 (2013), pp. 1020–1041.            IEEE Transactions on Communications 68.8 (2020),
                                                                     pp.  5228–5241.  DOI:  10 . 1109 / TCOMM . 2020 .
          [67] R. A. Berry and R. Johari. Economic Modeling in Net‑
               working: A Primer. Now Foundations and Trends,        2995150.
               2013. DOI: 10.1561/1300000011.                  [79] Y . Gu, W. Saad, M. Bennis, M. Debbah, and Z. Han.
          [68] S. O. Oladejo and O. E. Falowo. “Latency‑Aware Dy‑    “Matching  theory  for  future  wireless  networks:
               namic Resource Allocation Scheme for Multi‑Tier       fundamentals and applications”. In: IEEE Communi‑
               5G Network: A Network Slicing‑Multitenancy Sce‑       cations Magazine 53.5 (May 2015), pp. 52–59. DOI:
               nario”. In: IEEE Access 8 (2020), pp. 74834–74852.    10.1109/MCOM.2015.7105641.
          [69] M. Bennis, M. Debbah, and H. V. Poor. “Ultrareli‑  [80] Youssef Hamadi, Christian Bessiere, and Joël Quin‑
               able and Low‑Latency Wireless Communication:          queton.  “Backtracking  in  distributed  constraint
               Tail, Risk, and Scale”. In: Proceedings of the IEEE   networks”. In: Proceedings ECAI’98. Citeseer. 1998,
               106.10 (2018), pp. 1834–1853.                         pp. 219–223.
          [70] Janko Gravner. Lecture notes for Introduction Prob‑  [81] Youssef  Hamadi  and  Georg  Ringwelski.  “Boosting
               ability. Dec. 2017.                                   distributed  constraint  satisfaction”.  In:  Journal  of
                                                                     Heuristics 17.3 (2011), pp. 251–279.
          [71] A. Sinha and E. Modiano. “Network utility max‑
               imization with heterogeneous traf ic  lows”. In:  [82] Grzegorz Kondrak and Peter Van Beek. “A theoreti‑
               2018 16th International Symposium on Modeling         cal evaluation of selected backtracking algorithms”.
               and Optimization in Mobile, Ad Hoc, and Wireless      In:    icial  Intelligence  89.1‑2  (1997),  pp.  365–
               Networks (WiOpt). 2018, pp. 1–8.                      387.
          [72] S. Lamparter, D. Oberle, and A. Eberhart. “Approxi‑  [83] Solomon  W  Golomb  and  Leonard  D  Baumert.
               mating service utility from policies and value func‑  “Backtrack  programming”.  In:  Journal  of  the  ACM
               tion patterns”. In: Sixth IEEE International Work‑    (JACM) 12.4 (1965), pp. 516–524.
               shop on Policies for Distributed Systems and Net‑  [84] Vipin   Kumar.   “Algorithms   for   constraint‑
               works (POLICY’05). 2005, pp. 159–168.                 satisfaction  problems:  A  survey”.  In:  AI  magazine
          [73] Ralph L Keeney, Howard Raiffa, et al. Decisions with  13.1 (1992), pp. 32–32.
               multiple objectives: preferences and value trade‑  [85]  John DC Little. “A proof for the queuing formula:
               offs. Cambridge university press, 1993.               L  =      W”.  In:  Operations  research  9.3  (1961),
          [74] D. P. Palomar and M. Chiang. “A Tutorial on Decom‑    pp. 383–387.
               position Methods for Network Utility Maximaza‑  [86] J.  Chen  and  L.  Feng.  “Using  Lower  and  Upper
               tion”. In: IEEE Journal on Sel. Areas in Comms. (JSAC)  Bounds  to  Increase  the  Computing  Accuracy  of
               24.8 (2006), pp. 1439–1451.                           Monte Carlo Method”.  In:  2010  International Con‑
          [75] Jame Reilly, Magda Chatzaki, and Alex Galis. “Qual‑   ference on Computational and Information Sciences.
               ity of Service and Routing in Multi‑Domain Broad‑     2010, pp. 630–633.
               band Transport Networks”. In: Multi‑domain com‑  [87] Ilya M Sobol. A primer for the Monte Carlo method.
               munication management systems. Ed. by Alex Galis.     CRC press, 1994.
               Boca Raton, FL., USA: CRC Press, 2000. Chap. 5,
                                                               [88] R.  M.  Karp  and  M.  Luby.  “Monte‑Carlo  algorithms
               pp. 49–78.                                            for enumeration and reliability problems”. In: 24th
          [76] Z. Mlika, M. Goonewardena, W. Ajib, and H. Elbiaze.   Annual Symposium on Foundations of Computer Sci‑
               “User–Base‑Station Association in HetSNets: Com‑      ence (sfcs 1983). 1983, pp. 56–64.
               plexity and Ef icient Algorithms”. In: IEEE Trans‑  [89]  Donald E Knuth. “Big omicron and big omega and
               actions on Vehicular Technology 66.2 (Feb. 2017),     big  theta”.  In:  ACM  Sigact  News  8.2  (1976),
               pp. 1484–1495. DOI: 10 . 1109 / TVT . 2016 .          pp. 18–24.
               2558501.
                                                               [90] PE Black. “big‑O notation, Dictionary of algorithms
                                                                     and  data  structures”.  In:  US  National  Institute  of
                                                                     Standards and Technology (2008).






                                             © International Telecommunication Union, 2021                    81
   88   89   90   91   92   93   94   95   96   97   98