Page 93 - ITU Journal Future and evolving technologies Volume 2 (2021), Issue 6 – Wireless communication systems in beyond 5G era
P. 93
ITU Journal on Future and Evolving Technologies, Volume 2 (2021), Issue 6
[65] NGMN. “Winner II Channel Models, Standard IST‑ [77] Z. Mlika, E. Driouch, and W. Ajib. “User Association
4‑027756 WINNER II D1.1.2 v1.2”. In: Accessed Under SINR Constraints in HetNets: Upper Bound
on: 2019‑05‑18. Sept., 2007. URL: https://www. and NP‑Hardness”. In: IEEE Communications Let‑
cept.org/files/8339/winner2%20-%20final% ters 22.8 (Aug. 2018), pp. 1672–1675. DOI: 10 .
20report.pdf. 1109/LCOMM.2018.2840714.
[66] Y. Zhang, C. Lee, D. Niyato, and P. Wang. “Auction [78] T . Hoessler, P . Schulz, E. A. Jorswieck, M. Simsek,
Approaches for Resource Allocation in Wireless and G. P . Fettweis. “Stable Matching for Wireless
Systems: A Survey”. In: IEEE Communications Sur‑ URLLC in Multi‑Cellular, Multi‑User Systems”. In:
veys Tutorials 15.3 (2013), pp. 1020–1041. IEEE Transactions on Communications 68.8 (2020),
pp. 5228–5241. DOI: 10 . 1109 / TCOMM . 2020 .
[67] R. A. Berry and R. Johari. Economic Modeling in Net‑
working: A Primer. Now Foundations and Trends, 2995150.
2013. DOI: 10.1561/1300000011. [79] Y . Gu, W. Saad, M. Bennis, M. Debbah, and Z. Han.
[68] S. O. Oladejo and O. E. Falowo. “Latency‑Aware Dy‑ “Matching theory for future wireless networks:
namic Resource Allocation Scheme for Multi‑Tier fundamentals and applications”. In: IEEE Communi‑
5G Network: A Network Slicing‑Multitenancy Sce‑ cations Magazine 53.5 (May 2015), pp. 52–59. DOI:
nario”. In: IEEE Access 8 (2020), pp. 74834–74852. 10.1109/MCOM.2015.7105641.
[69] M. Bennis, M. Debbah, and H. V. Poor. “Ultrareli‑ [80] Youssef Hamadi, Christian Bessiere, and Joël Quin‑
able and Low‑Latency Wireless Communication: queton. “Backtracking in distributed constraint
Tail, Risk, and Scale”. In: Proceedings of the IEEE networks”. In: Proceedings ECAI’98. Citeseer. 1998,
106.10 (2018), pp. 1834–1853. pp. 219–223.
[70] Janko Gravner. Lecture notes for Introduction Prob‑ [81] Youssef Hamadi and Georg Ringwelski. “Boosting
ability. Dec. 2017. distributed constraint satisfaction”. In: Journal of
Heuristics 17.3 (2011), pp. 251–279.
[71] A. Sinha and E. Modiano. “Network utility max‑
imization with heterogeneous traf ic lows”. In: [82] Grzegorz Kondrak and Peter Van Beek. “A theoreti‑
2018 16th International Symposium on Modeling cal evaluation of selected backtracking algorithms”.
and Optimization in Mobile, Ad Hoc, and Wireless In: icial Intelligence 89.1‑2 (1997), pp. 365–
Networks (WiOpt). 2018, pp. 1–8. 387.
[72] S. Lamparter, D. Oberle, and A. Eberhart. “Approxi‑ [83] Solomon W Golomb and Leonard D Baumert.
mating service utility from policies and value func‑ “Backtrack programming”. In: Journal of the ACM
tion patterns”. In: Sixth IEEE International Work‑ (JACM) 12.4 (1965), pp. 516–524.
shop on Policies for Distributed Systems and Net‑ [84] Vipin Kumar. “Algorithms for constraint‑
works (POLICY’05). 2005, pp. 159–168. satisfaction problems: A survey”. In: AI magazine
[73] Ralph L Keeney, Howard Raiffa, et al. Decisions with 13.1 (1992), pp. 32–32.
multiple objectives: preferences and value trade‑ [85] John DC Little. “A proof for the queuing formula:
offs. Cambridge university press, 1993. L = W”. In: Operations research 9.3 (1961),
[74] D. P. Palomar and M. Chiang. “A Tutorial on Decom‑ pp. 383–387.
position Methods for Network Utility Maximaza‑ [86] J. Chen and L. Feng. “Using Lower and Upper
tion”. In: IEEE Journal on Sel. Areas in Comms. (JSAC) Bounds to Increase the Computing Accuracy of
24.8 (2006), pp. 1439–1451. Monte Carlo Method”. In: 2010 International Con‑
[75] Jame Reilly, Magda Chatzaki, and Alex Galis. “Qual‑ ference on Computational and Information Sciences.
ity of Service and Routing in Multi‑Domain Broad‑ 2010, pp. 630–633.
band Transport Networks”. In: Multi‑domain com‑ [87] Ilya M Sobol. A primer for the Monte Carlo method.
munication management systems. Ed. by Alex Galis. CRC press, 1994.
Boca Raton, FL., USA: CRC Press, 2000. Chap. 5,
[88] R. M. Karp and M. Luby. “Monte‑Carlo algorithms
pp. 49–78. for enumeration and reliability problems”. In: 24th
[76] Z. Mlika, M. Goonewardena, W. Ajib, and H. Elbiaze. Annual Symposium on Foundations of Computer Sci‑
“User–Base‑Station Association in HetSNets: Com‑ ence (sfcs 1983). 1983, pp. 56–64.
plexity and Ef icient Algorithms”. In: IEEE Trans‑ [89] Donald E Knuth. “Big omicron and big omega and
actions on Vehicular Technology 66.2 (Feb. 2017), big theta”. In: ACM Sigact News 8.2 (1976),
pp. 1484–1495. DOI: 10 . 1109 / TVT . 2016 . pp. 18–24.
2558501.
[90] PE Black. “big‑O notation, Dictionary of algorithms
and data structures”. In: US National Institute of
Standards and Technology (2008).
© International Telecommunication Union, 2021 81