Page 22 - ITU Journal Future and evolving technologies Volume 2 (2021), Issue 5 – Internet of Everything
P. 22
ITU Journal on Future and Evolving Technologies, Volume 2 (2021), Issue 5
[18] M. A. Alsheikh, S. Lin, D. Niyato, and H. Tan. “Ma‑ [28] Z. Zhou, H. Liao, B. Gu, K. M. S. Huq, S. Mumtaz, and
chine Learning in Wireless Sensor Networks: Al‑ J. Rodriguez. “Robust Mobile Crowd Sensing: When
gorithms, Strategies, and Applications”. In: IEEE Deep Learning Meets Edge Computing”. In: vol. 32.
Communications Surveys Tutorials 16.4 (2014), 4. July 2018, pp. 54–60. DOI:10.1109/MNET.2018.
pp. 1996–2018. ISSN:1553‑877X. DOI:10.1109/ 1700442.
COMST.2014.2320099.
[29] Sangaiah, V T M. Hos‑
[19] P. V. Klaine, M. A. Imran, O. Onireti, and R. D. Souza. sain, and G. Muhammad. “Enforcing Position‑Based
“A Survey of Machine Learning Techniques Applied identiality Paradigm
to Self‑Organizing Cellular Networks”. In: IEEE through Mobile Edge Computing in Real‑Time In‑
dustrial Informatics”. In: IEEE Transactions on In‑
Communications Surveys Tutorials 19.4 (2017),
pp. 2392–2431. ISSN:1553‑877X. DOI:10.1109/ dustrial Informatics (2019), 1–1. ISSN: 1551‑
COMST.2017.2727878. 3203. DOI: 10.1109/TII.2019.2898174.
[20] H. B. McMahan, E. Moore, D. Ramage, and B. Agüera [30] Yu, Wang, Langar “Computation of‑
y Arcas. “Federated Learning of Deep Networks loading for mobile edge computing: A deep learn‑
using Model Averaging”. In: vol. abs/1602.05629. ing approach”. In: 2017 IEEE 28th Annual Interna‑
2016. arXiv: 1602.05629. URL:http:/ /arxiv. tional Symposium on Personal, Indoor, and Mobile
org/abs/1602.05629. Radio Communications (PIMRC). Oct. 2017,
pp. 1–6. DOI: 10.1109/PIMRC.2017.8292514.
[21] Q. Yang, Y. Liu, T. Chen, and Y. Tong. “Federated
[31] N. C. Luong, Z. Xiong, P . Wang, and D. Niyato. “Op‑
Machine Learning: Concept and Applications”. In:
timal Auction for Edge Computing Resource Man‑
vol. abs/1902.04885. 2019. arXiv: 1902 . 04885.
agement Mobile Blockchain Networks: Deep
URL:http://arxiv.org/abs/1902.04885.
Learning Approach”. In: (May 2018), pp. 1–6. ISSN:
[22] V. Smith, C.‑K. Chiang, M. Sanjabi, and A. Tal‑
1938-1883. DOI: 10.1109/ICC.2018.8422743.
walkar. “Federated Multi‑Task Learning”. In:
[32] T . Tuor, S. Wang, T . Salonidis, B. J. Ko, and K. K. Le‑
vol. abs/1705.10467. 2017. arXiv: 1705 . 10467.
ung. “Demo abstract: Distributed machine learning
URL:http://arxiv.org/abs/1705.10467.
at resource‑limited edge nodes”. In: IEEE INFOCOM
[23] N. H. Tran, W. Bao, A. Zomaya, N. Minh N.H., and 2018 ‑ IEEE Conference on Computer Communica‑
C. S. Hong. “Federated Learning over Wireless Net‑
tions Workshops (INFOCOM WKSHPS) Apr 2018,
works: Optimization Model Design and Analysis”. pp. 1–2. DOI: 10.1109/INFCOMW.2018.8406837.
In: IEEE INFOCOM 2019 ‑ IEEE Conference on Com‑
[33] T T Ohtsuki. “Cell dis‑
puter Communications. Apr. 2019, pp. 1387–1395.
Q‑learning heterogeneous networks”.
DOI:10.1109/INFOCOM.2019.8737464.
2013 ic Signal and Information Pro‑
[24] Z. Wang, M. Song, Z. Zhang, Y. Song, Q. Wang, and H.
cessing Association Annual Summit and Conference.
Qi. “Beyond Inferring Class Representatives: User‑
Oct. 2013, pp. 1–6. DOI: 10.1109/APSIPA.2013.
Level Privacy Leakage From Federated Learning”. 6694368.
In: IEEE INFOCOM 2019 ‑ IEEE Conference on Com‑
[34] Li, Ota, “Human Loop:
puter Communications. Apr. 2019, pp. 2512–2520.
Distributed Deep Model for Mobile Crowdsensing”.
DOI:10.1109/INFOCOM.2019.8737416.
In: IEEE Internet of Things Journal 5.6 (Dec. 2018),
[25] H. B. McMahan, E. Moore, D. Ramage, and B. pp. 4957–4964. ISSN: 2327‑4662. DOI: 10 . 1109 /
Agüera y Arcas. “Communication‑Ef icient Learn‑
JIOT.2018.2883318.
ing of Deep Networks from Decentralized Data”.
In: Proceedings of the 20th International Conference [35] Valerio, Passarella, “Optimal
on Arti icial Intelligence and Statistics. Vol. 54. Pro‑ trade‑off between of
ceedings of Machine Learning Research. Fort Laud‑ distributed learning in Mobile Edge Computing: An
erdale, FL, USA: PMLR, Apr. 2017, pp. 1273–1282. analytical approach”. In: (June 2017), pp. 1–9. DOI:
URL:http : / / proceedings . mlr . press / v54 / 10.1109/WoWMoM.2017.7974310.
mcmahan17a.html. [36] Y . Jiao, P . Wang, D. Niyato, M. Abu Alsheikh, and S.
[26] P. Subramaniam and M. J. Kaur. “Review of Security Feng. “Pro it Maximization Auction and Data Man‑
in Mobile Edge Computing with Deep Learning”. In: agement in Big Data Markets”. In: 2017 IEEE Wire‑
(Mar. 2019), pp. 1–5. DOI:10.1109/ICASET.2019. less Communications and Networking Conference
(WCNC). Mar. 2017, pp. 1–6. DOI: 10.1109/WCNC.
8714349.
2017.7925760.
[27] Z. Chang, L. Lei, Z. Zhou, S. Mao, and T. Ristaniemi.
Learn to Cache: Machine Learning for Network Edge
Caching in the Big Data Era. Vol. 25. 3. June 2018,
pp. 28–35. DOI:10.1109/MWC.2018.1700317.
10 © International Telecommunication Union, 2021