Page 21 - ITU Journal Future and evolving technologies Volume 2 (2021), Issue 5 – Internet of Everything
P. 21
ITU Journal on Future and Evolving Technologies, Volume 2 (2021), Issue 5
accomplished. The effectiveness of the proposed [9] R. Fantacci and B. Picano. “A Matching Game With
framework has been inally validated by providing Discard Policy for Virtual Machines Placement in
performance comparisons alternative Hybrid Cloud‑Edge Architecture for Industrial IoT
predictive on the chaos theory In Systems”. In: IEEE Transactions on Industrial In‑
reference to the future research directions, a very formatics 16.11 (2020), pp. 7046–7055. DOI:10 .
interesting topic needing further exploration may be 1109/TII.2020.2999880.
represented by the de inition of novel solutions and
[10] F. Chiti, R. Fantacci, and B. Picano. “A matching
methodologies to allow the design of privacy‑based
game for tasks of loading in integrated edge‑fog
inference deep ad‑
computing systems”. In: Transactions on Emerg‑
vanced signal processing in heterogeneous hardware ar‑
ing Telecommunications Technologies 31.2 (2020).
chitectures. Such a privacy‑preserving approach will rely
e3718 ett.3718, e3718. DOI: https : / / doi .
on Homomorphic Encryption that enables processing di‑
org / 10 . 1002 / ett . 3718. eprint: https : / /
rectly on encrypted data.
onlinelibrary.wiley.com/doi/pdf/10.1002/
REFERENCES ett.3718. URL:https://onlinelibrary.wiley.
com/doi/abs/10.1002/ett.3718.
[1] H. Tian ield. “Towards Edge‑Cloud Computing”. In: [11] R. Fantacci and B. Picano. “When Network Slic‑
2018 IEEE International Conference on Big Data ing Meets Prospect Theory: A Service Provider
(Big Data). Dec. 2018, pp. 4883–4885. DOI: 10 . Revenue Maximization Framework”. In: IEEE
1109/BigData.2018.8622052. Transactions on Vehicular Technology 69.3 (2020),
pp. 3179–3189. DOI: 10 . 1109 / TVT . 2019 .
[2] H. Liu, F. Eldarrat, H. Alqahtani, A. Reznik, X. de Foy,
and Y. Zhang. “Mobile Edge Cloud System: Architec‑ 2963462.
tures, Challenges, and Approaches”. In: vol. 12. 3. [12] W. Saad, M. Bennis, and M. Chen. “A Vision of 6G
Sept. 2018, pp. 2495–2508. DOI:10.1109/JSYST. Wireless Systems: Applications, Trends, Technolo‑
2017.2654119. gies, and Open Research Problems”. In: IEEE Net‑
work 34.3 (2020), pp. 134–142. DOI: 10 . 1109 /
[3] X. Shan, H. Zhi, P. Li, and Z. Han. “A Survey on Com‑
putation Of loading for Mobile Edge Computing In‑ MNET.001.1900287.
formation”. In: 2018 IEEE 4th International Confer‑ [13] C. Tselios, I. Politis, M. Tsagkaropoulos, and T. Dag‑
ence on Big Data Security on Cloud (BigDataSecu‑ iuklas. “Valuing Quality of Experience: A Brave New
rity), IEEE International Conference on High Perfor‑ Era of User Satisfaction and Revenue Possibilities”.
mance and Smart Computing, (HPSC) and IEEE In‑ In: 2011 50th FITCE Congress ‑ ”ICT: Bridging an
ternational Conference on Intelligent Data and Se‑ Ever Shifting Digital Divide”. 2011. DOI:10.1109/
curity (IDS). May2018, pp. 248–251. DOI:10.1109/ FITCE.2011.6133422.
BDS/HPSC/IDS18.2018.00060.
[14] F. Conti, S. Colonnese, F. Cuomo, L. Chiaraviglio,
[4] P. Mach and Z. Becvar. “Mobile Edge Computing: and I. Rubin. “Quality Of Experience Meets Opera‑
A Survey on Architecture and Computation Of‑ tors Revenue: Dash Aware Management for Mobile
loading”. In: IEEE Communications Surveys Tutori‑ Streaming”. In: 2019 8th European Workshop on Vi‑
als 19.3 (2017), pp. 1628–1656. ISSN:1553‑877X. sual Information Processing (EUVIP). 2019, pp. 64–
DOI:10.1109/COMST.2017.2682318. 69. DOI:10.1109/EUVIP47703.2019.8946152.
[5] S. Singh. “Optimize cloud computations using edge [15] C. Zhang, P. Patras, and H. Haddadi. “Deep Learn‑
computing”. In: 2017 International Conference on ing in Mobile and Wireless Networking: A Survey”.
Big Data, IoT and Data Science (BID). Dec. 2017, In: vol. abs/1803.04311. 2018. arXiv: 1803.04311.
pp. 49–53. DOI:10.1109/BID.2017.8336572. URL:http://arxiv.org/abs/1803.04311.
[6] P. Corcoran and S. K. Datta. “Mobile‑Edge Com‑ [16] S. Athmaja, M. Hanumanthappa, and V. Kavitha. “A
puting and the Internet of Things for Consumers: survey of machine learning algorithms for big data
Extending cloud computing and services to the analytics”. In: 2017 International Conference on In‑
edge of the network”. In: IEEE Consumer Electron‑ novations in Information, Embedded and Communi‑
ics Magazine 5.4 (Oct. 2016), pp. 73–74. ISSN:2162‑ cation Systems (ICIIECS). Mar. 2017, pp. 1–4. DOI:
2248. DOI:10.1109/MCE.2016.2590099. 10.1109/ICIIECS.2017.8276028.
[7] M. Chiang and T. Zhang. “Fog and IoT: An Overview [17] M. Mohammadi, A. Al‑Fuqaha, S. Sorour, and M.
of Research Opportunities”. In: vol. 3. 6. Dec. 2016, Guizani. “Deep Learning for IoT Big Data and
pp. 854–864. DOI:10.1109/JIOT.2016.2584538. Streaming Analytics: A Survey”. In: IEEE Commu‑
nications Surveys Tutorials 20.4 (2018), pp. 2923–
[8] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C.
2960. ISSN: 1553‑877X. DOI: 10 . 1109 / COMST .
Makaya, T. He, and K. S. Chan. “When Edge
Meets Learning: Adaptive Control for Resource‑ 2018.2844341.
Constrained Distributed Machine Learning”. In:
2018, pp. 63–71.
© International Telecommunication Union, 2021 9