Page 21 - ITU Journal Future and evolving technologies Volume 2 (2021), Issue 5 – Internet of Everything
P. 21

ITU Journal on Future and Evolving Technologies, Volume 2 (2021), Issue 5




          accomplished.  The  effectiveness  of  the  proposed   [9] R. Fantacci and B. Picano. “A Matching Game With
          framework  has  been   inally  validated  by  providing    Discard Policy for Virtual Machines Placement in
          performance   comparisons              alternative         Hybrid Cloud‑Edge Architecture for Industrial IoT
          predictive      on  the  chaos  theory  In                 Systems”. In: IEEE Transactions on Industrial In‑
          reference  to  the  future  research  directions,  a  very   formatics 16.11 (2020), pp. 7046–7055. DOI:10 .
          interesting  topic  needing  further  exploration  may  be   1109/TII.2020.2999880.
          represented  by  the  de inition  of  novel  solutions  and
                                                               [10] F. Chiti, R. Fantacci, and B. Picano. “A matching
          methodologies  to  allow  the  design  of  privacy‑based
                                                                     game for tasks of loading in integrated edge‑fog
              inference    deep      ad‑
                                                                     computing systems”. In: Transactions on Emerg‑
          vanced signal processing in heterogeneous hardware ar‑
                                                                     ing Telecommunications Technologies 31.2 (2020).
          chitectures. Such a privacy‑preserving approach will rely
                                                                     e3718 ett.3718, e3718. DOI: https : / / doi .
          on Homomorphic Encryption that enables processing di‑
                                                                     org / 10 . 1002 / ett . 3718. eprint: https : / /
          rectly on encrypted data.
                                                                     onlinelibrary.wiley.com/doi/pdf/10.1002/
          REFERENCES                                                 ett.3718. URL:https://onlinelibrary.wiley.
                                                                     com/doi/abs/10.1002/ett.3718.
           [1] H. Tian ield. “Towards Edge‑Cloud Computing”. In:  [11] R. Fantacci and B. Picano. “When Network Slic‑
               2018 IEEE International Conference on Big Data        ing Meets Prospect Theory: A Service Provider
               (Big Data). Dec. 2018, pp. 4883–4885. DOI: 10 .       Revenue Maximization Framework”. In: IEEE
               1109/BigData.2018.8622052.                            Transactions on Vehicular Technology 69.3 (2020),
                                                                     pp. 3179–3189. DOI: 10 . 1109 / TVT . 2019 .
           [2] H. Liu, F. Eldarrat, H. Alqahtani, A. Reznik, X. de Foy,
               and Y. Zhang. “Mobile Edge Cloud System: Architec‑    2963462.
               tures, Challenges, and Approaches”. In: vol. 12. 3.  [12] W. Saad, M. Bennis, and M. Chen. “A Vision of 6G
               Sept. 2018, pp. 2495–2508. DOI:10.1109/JSYST.         Wireless Systems: Applications, Trends, Technolo‑
               2017.2654119.                                         gies, and Open Research Problems”. In: IEEE Net‑
                                                                     work 34.3 (2020), pp. 134–142. DOI: 10 . 1109 /
           [3] X. Shan, H. Zhi, P. Li, and Z. Han. “A Survey on Com‑
               putation Of loading for Mobile Edge Computing In‑     MNET.001.1900287.
               formation”. In: 2018 IEEE 4th International Confer‑  [13] C. Tselios, I. Politis, M. Tsagkaropoulos, and T. Dag‑
               ence on Big Data Security on Cloud (BigDataSecu‑      iuklas. “Valuing Quality of Experience: A Brave New
               rity), IEEE International Conference on High Perfor‑  Era of User Satisfaction and Revenue Possibilities”.
               mance and Smart Computing, (HPSC) and IEEE In‑        In: 2011 50th FITCE Congress ‑ ”ICT: Bridging an
               ternational Conference on Intelligent Data and Se‑    Ever Shifting Digital Divide”. 2011. DOI:10.1109/
               curity (IDS). May2018, pp. 248–251. DOI:10.1109/      FITCE.2011.6133422.
               BDS/HPSC/IDS18.2018.00060.
                                                               [14] F. Conti, S. Colonnese, F. Cuomo, L. Chiaraviglio,
           [4] P. Mach and Z. Becvar. “Mobile Edge Computing:        and I. Rubin. “Quality Of Experience Meets Opera‑
               A Survey on Architecture and Computation Of‑          tors Revenue: Dash Aware Management for Mobile
                loading”. In: IEEE Communications Surveys Tutori‑    Streaming”. In: 2019 8th European Workshop on Vi‑
               als 19.3 (2017), pp. 1628–1656. ISSN:1553‑877X.       sual Information Processing (EUVIP). 2019, pp. 64–
               DOI:10.1109/COMST.2017.2682318.                       69. DOI:10.1109/EUVIP47703.2019.8946152.
           [5] S. Singh. “Optimize cloud computations using edge  [15] C. Zhang, P. Patras, and H. Haddadi. “Deep Learn‑
               computing”. In: 2017 International Conference on      ing in Mobile and Wireless Networking: A Survey”.
               Big Data, IoT and Data Science (BID). Dec. 2017,      In: vol. abs/1803.04311. 2018. arXiv: 1803.04311.
               pp. 49–53. DOI:10.1109/BID.2017.8336572.              URL:http://arxiv.org/abs/1803.04311.
           [6] P. Corcoran and S. K. Datta. “Mobile‑Edge Com‑  [16] S. Athmaja, M. Hanumanthappa, and V. Kavitha. “A
               puting and the Internet of Things for Consumers:      survey of machine learning algorithms for big data
               Extending cloud computing and services to the         analytics”. In: 2017 International Conference on In‑
               edge of the network”. In: IEEE Consumer Electron‑     novations in Information, Embedded and Communi‑
               ics Magazine 5.4 (Oct. 2016), pp. 73–74. ISSN:2162‑   cation Systems (ICIIECS). Mar. 2017, pp. 1–4. DOI:
               2248. DOI:10.1109/MCE.2016.2590099.                   10.1109/ICIIECS.2017.8276028.
           [7] M. Chiang and T. Zhang. “Fog and IoT: An Overview  [17] M. Mohammadi, A. Al‑Fuqaha, S. Sorour, and M.
               of Research Opportunities”. In: vol. 3. 6. Dec. 2016,  Guizani. “Deep Learning for IoT Big Data and
               pp. 854–864. DOI:10.1109/JIOT.2016.2584538.           Streaming Analytics: A Survey”. In: IEEE Commu‑
                                                                     nications Surveys Tutorials 20.4 (2018), pp. 2923–
           [8] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C.
                                                                     2960. ISSN: 1553‑877X. DOI: 10 . 1109 / COMST .
               Makaya, T. He, and K. S. Chan. “When Edge
               Meets Learning: Adaptive Control for Resource‑        2018.2844341.
               Constrained Distributed Machine Learning”. In:
               2018, pp. 63–71.



                                             © International Telecommunication Union, 2021                      9
   16   17   18   19   20   21   22   23   24   25   26