Page 36 - ITU Journal Future and evolving technologies Volume 2 (2021), Issue 4 – AI and machine learning solutions in 5G and future networks
P. 36

ITU Journal on Future and Evolving Technologies, Volume 2 (2021), Issue 4




            -17.5                              -20                               -24
                                              -20.5
                                               -21
           NMSE [dB]  -18                    NMSE [dB]  -21.5                  NMSE [dB]  -24.5


            -18.5
                                               -22
                                              -22.5                              -25
             -19                               -23                              -25.5
              0.7  0.75  0.8  0.85  0.9  0.95  1  0.7  0.75  0.8  0.85  0.9  0.95  1  0.7  0.75  0.8  0.85  0.9  0.95  1
                      Detection threshold δ             Detection threshold δ             Detection threshold δ

                                  Fig. 6 – NMSE behavior over the decision threshold of the 3 training datasets.
                                               Table 1 – NMSE table for training data
                              SNR (dB)         Algorithm   −15         −10        −5
                                               SW‐OMP      −1.45 dB    −5.70 dB   −9.68 dB
                              Pilot Frames: 20  MLGS‐SBL   −4.29 dB    −9.13 dB   −12.34 dB
                                               PCSBL‐DDT   −8.16 dB    −10.62 dB  −11.07 dB
                                               PC‐OMP      −8.34 dB    −12.36 dB  −16.15 dB
                                               SW‐OMP      −3.95 dB    −7.95 dB   −11.87 dB
                              Pilot Frames: 40  MLGS‐SBL   −7.55 dB    −11.19 dB  −14.15 dB
                                               PCSBL‐DDT   −10.56 dB   −12.14 dB  −12.62 dB
                                               PC‐OMP      −12.66 dB   −16.33 dB  −19.78 dB
                                               SW‐OMP      −7.33 dB    −11.60 dB  −15.63 dB
                              Pilot Frames: 80  MLGS‐SBL   −13.02 dB   −16.37 dB  −18.94 dB
                                               PCSBL‐DDT   −11.90 dB   −13.10 dB  −13.63 dB
                                               PC‐OMP      −18.70 dB   −21.49 dB  −24.48 dB

                                                 Table 2 – NMSE table for test data
                             SNR (dB)         Algorithm   [−20, −11)   [−11, −6)   [−6, 0]
                                              MLGS‐SBL    −7.66 dB     −10.97 dB   −12.34 dB
                             Pilot Frames: 20  PCSBL‐DDT  −8.94 dB     −9.99 dB    −10.31 dB
                                              PC‐OMP      −9.09 dB     −12.45 dB   −14.22 dB
                                              MLGS‐SBL    −11.87 dB    −12.79 dB   −14.20 dB
                             Pilot Frames: 40  PCSBL‐DDT  −10.82 dB    −11.33 dB   −11.89 dB
                                              PC‐OMP      −13.79 dB    −15.24 dB   −16.79 dB
                                              MLGS‐SBL    −13.62 dB    −16.23 dB   −20.08 dB
                             Pilot Frames: 80  PCSBL‐DDT  −11.74 dB    −12.47 dB   −12.98 dB
                                              PC‐OMP      −16.32 dB    −19.07 dB   −23.91 dB

          6.  NUMERICAL RESULTS                                We note that while the three new algorithms presented
                                                               in this paper have been  ine‐tuned based on the training
                                                               dataset, the baseline algorithm, SW‐OMP, has been imple‐
                w  discuss      performance  of
                                                               mented as‐is from the literature. On the other hand, in our
            proposed        tr    testing
                                                               implementation of SW‐OMP, we consider the case where
          data  generated    Raymobtime,    ra  tr  based
                                                               the true AoDs and AoAs are contained in the sparsifying
          mmWave channel generation tool. We train the mmWave
                                                               dictionary. While the proposed algorithms do suffer from
          channel estimation algorithms using 10, 000 independent
                                                                 off‐grid  effects,    SW‐OMP      insulated
            r    consisting  of  100    be‐
                                                               from the performance degradation caused by them.
          tw    T    Rx.  Mor    about    channel
          generation methodology can be found in [24  We used
          20  40  and 80 pilot frames during both the training and
          testing phases of the proposed   For the train‐
          ing phase, we used SNR values of {−15, −10, −5} dB. We
                performance  of    proposed  al‐
          gorithms      reference  state‐of‐the‐art  model‐based
          greedy search algorithm called SW-OMP [4].



          20                                 © International Telecommunication Union, 2021
   31   32   33   34   35   36   37   38   39   40   41