Page 53 - ITU Journal, ICT Discoveries, Volume 3, No. 1, June 2020 Special issue: The future of video and immersive media
P. 53

ITU Journal: ICT Discoveries, Vol. 3(1), June 2020




          subband decomposition were employed. In this way, one  [15] D. Kingma, J. Ba (2015), Adam: A Method for Stochas-
          could significantly decrease the complexity of the predic-  tic Optimization, in Int. Conf. on Learning Representa-
          tors and finally make them suitable for a broad applica-  tions, 2014
          tion scenario like versatile video coding.
                                                               [16] J. Li, B. Li, J. Xu, R. Xiong, W. Gao, Fully Connected
                                                                   Network-Based Intra prediction for Image Coding, in
          REFERENCES
                                                                   IEEE Trans. Image Process, vol. 27, no. 7, 2018, pp.
          [1] E. Agustsson, F. Mentzer, M. Tschannen, L. Cavigelli, R.  3236-3247
             Timofte, L. Benini, and L. V. Gool, Soft-to-hard vector
             quantizationforend-to-endlearningcompressiblerep-  [17] D. Minnen, J. Ballé, G. Toderici, Joint autoregressive
             resentations, in Advances in Neural Information Pro-  and hierarchical priors for learned image compression,
             cessing Systems, 2017                                 in Advances in Neural Information Processing Systems,
                                                                   2018
          [2] M. Albrecht et al., Description of SDR, HDR and 360 °
             video coding technology proposal by Fraunhofer HHI,  [18] F. Mentzer, E. Agustsson, M. Tschannen, R. Timofte,
             Doc. JVET-J0014, San Diego, 2018                      and L. V. Gool, Conditional probability models for deep
                                                                   image compression, in IEEE Conf. on Computer Vision
          [3] J. Ballé, V. Laparra, E. P. Simoncelli, End-to-end op-  and Pattern Recognition, 2018.
             timized image compression, in Int. Conf. on Learning
             Representations, 2017                             [19] G. J. Sullivan, J.-R. Ohm, Meeting Report of the 10th
                                                                   JVET Meeting, Doc. JVET-J1000, San Diego, 2018
          [4] J. Ballé, D. Minnen, S. Singh, S. J. Hwang, and N. John-
             ston, Variational image compression with a scale hy-  [20] J. Pfaff, H. Schwarz, D. Marpe, B. Bross, S. De-Luxán-
             perprior, in Int. Conf. on Learning Representations,  Hernández, P. Helle, C. R. Helmrich, T. Hinz, W.-Q. Lim,
             2018                                                  J. Ma, T. Nguyen, J. Rasch, M. Schäfer, M. Siekmann,
                                                                   G. Venugopal, A. Wieckowski, M. Winken, T. Wiegand
          [5] G. Bjøntegaard, Calculation of average PSNR differ-
                                                                   Video Compression Using Generalized Binary Parti-
             ences between RD-curves, Doc. VCEG-M33, 2001
                                                                   tioning, Trellis Coded Quantization, Perceptually Opti-
          [6] G. Bjøntegaard, Improvement of BD-PSNR Model, Doc.   mized Encoding, and Advanced Prediction and Trans-
             VCEG-AI11, 2008                                       form Coding , to appear in IEEE Trans. Circuits and Sys-
                                                                   tems for Video Technol.
          [7] F. Bossen, J. Boyce, X. Li, V. Seregin, K. Sühring, JVET
             common test conditions and software reference con-  [21] J. Pfaff, P. Helle, D. Maniry and S. Kaltenstadler, B.
             figurations for SDR video, Doc. JVET-N1010, Geneva,   Stallenberger, P. Merkle, M. Siekmann, H. Schwarz, D.
             2019                                                  Marpe, T. Wiegand, Intra prediction modes based on
                                                                   Neural Networks, Doc. JVET-J0037, San Diego, 2018
          [8] B. Bross, Versatile Video Coding (Draft 1), Doc. JVET-
             J1001, San Diego, 2018                            [22] J. Pfaff, P. Helle, D. Maniry, S. Kaltenstadler, W. Samek,
                                                                   H. Schwarz, D. Marpe, T. Wiegand, Neural network
          [9] B. Bross, J. Chen, S. Liu, Versatile Video Coding (Draft  based intra prediction for video coding, in Proc. SPIE
             5), Doc. JVET-N1001, Geneva, 2019                     Applic. of Digital Image Process. XLI, volume 10752,
                                                                   2018
          [10] B. Bross, J. Chen, S. Liu, Versatile Video Coding (Draft
             8), Doc. JVET-Q2001, Brussels, 2020
                                                               [23] J. Pfaff, B. Stallenberger, M. Schäfer, P. Merkle, P.
          [11] J. Chen, M. Karczewicz, Y.-W. Huang, K. Choi, J.-R.  Helle, T. Hinz, H. Schwarz, D. Marpe, T. Wiegand, CE3:
             Ohm, G. J. Sullivan, The Joint Exploration Model (JEM)  Affine linear weighted intra prediction (CE3-4.1, CE3-
             for Video Compression with Capability beyond HEVC, to  4.2), Doc. JVET-N0217, Geneva, 2019
             appear in IEEE Trans. Circuits and Systems for Video
                                                               [24] O. Rippel, L. Bourdev, Real-time adaptive image com-
             Technol.
                                                                   pression, in Proc. of Machine Learning Research, vol.
          [12] ITU-T and ISO/IEC, Advanced Video Coding for        70, 2017, pp. 2922–2930
             Generic Audiovisual Services, H.264 and ISO/IEC
                                                               [25] A. Said, X. Zhao, M. Karczewicz, J. Chen, Position de-
             14496-10, vers. 1, 2003
                                                                   pendent prediction combination for intra-frame video
          [13] ITU-T and ISO/IEC, High Efficiency Video Coding,    coding, in IEEE International Conference on Image
             H.265 and ISO/IEC 23008-2, vers. 1, 2013              Processing (ICIP), 2016
          [14] P. Helle, J. Pfaff, M. Schäfer, R. Rischke, H. Schwarz, D.  [26] M. Schäfer, B. Stallenberger, J. Pfaff, P. Helle, H.
             Marpe, T. Wiegand, Intra Picture Prediction for Video  Schwarz, D. Marpe, T. Wiegand An Affine-Linear intra
             Coding with Neural Networks, in Proc. IEEE Data Com-  prediction With Complexity Constraints , in IEEE Inter-
             pression Conf. (DCC), Snowbird, 2019                  national Conference on Image Processing (ICIP), 2019





                                             © International Telecommunication Union, 2020                    31
   48   49   50   51   52   53   54   55   56   57   58