Page 221 - Kaleidoscope Academic Conference Proceedings 2020
P. 221

Industry-driven digital transformation




                                                               Table 1 - Ten element data stream with their arrival times
               Algorithm1: segmented time controlled count-min
                                sketch                         M       1   2   3   4   5   6   7   8   9   10
                     Input: Data stream (Sn) arriving in integer form
                               Truncation
                            Function truncate(Sn) {            S N     38   37   37.  37   38   37   39   40   40   40
              Trim any digits after the decimal point and assign the integer to Rn   5
                                return Rn
                                   }                           TIME(S  0.  0.  0.3   0.  0.  0.  0.  0.  0.  1.
                             Sketching function                )       1   2       4   5   6   7   8   9   0
                                Rn -> Hn
                 Function sketchingalgo(hashing function , current time ){
                           While S n is less than S max{
               Increment the hash row & column related to hashing function
                          If hash value is non-normal {        Table 2 - Hashing algorithm results of four values across
                     Update value of t2 with value of current time           five hashing functions
                      Update value of t1 with the value of t2}
                            else Update value of t3
                      If hashing function is equal to “normal” {       H 1     H 2     H 3     H 4     H 5
                      then   Increment row Hn column normal
                                   }
                      If hashing function is equal to “mild” {   37    1       3       4       4       2

                       then   Increment row Hn column mild     38      1       2       3       5       2
                                   }
                       If hashing function is equal to “high” {   39   2       4       3       5       3
                       then   Increment row Hn column high
                                   }
                      If hashing function is equal to “critical” {   40   2    4       5       4       3
                      then   Increment row Hn column critical
                                   }
                            Update column close
                             Update column far
                            } // end of while loop
              return rows H1 through H10 , column values normal, mild, high,
               critical,t1 and t2 ,t3 column values far and close in tabular form
                                   }
                             Compute function
                        Function compute (n, t1, t2t3, Hn) {
                              Assign t 1 to t temp1
                              Assign t 2 to t temp2
                              Assign t 3 to t temp3
                 Calculate t avg by dividing the sum of t temp1 to t temp2 by two
            Calculate Z compute by dividing the sum of t avg by  n of computed averages
                           Subtract t temp1 from t temp2
                          If data insertion is finished {
                Subtract one from the temp value and update column close
                                   }
                           Subtract t temp2 from t temp3
                          If data insertion is finished {
             Divide the temp value by three and update column far to the nearest
                                 integer
                                   }
             If the final value of close divided by the addition of far and close is
                            greater than FC threshold {
                               Send alarm
                                   }
            Calculate % anomalous data by dividing the sum of mild, high, critical
                   values by sum of normal, mild, high, critical values
                   If computed result greater than threshold result {
                               Send alarm
                                   }
                                   }
                     Output: processing time used for data analysis
                              Reset function
                           Function reset (Sn, time) {
                   If Sn value equal to S max or time equal 5 minutes {
                               Reset table}
                                   }

             Figure 2 - Segmented time controlled count-min sketch
                              pseudocode







                                                          – 163 –
   216   217   218   219   220   221   222   223   224   225   226