Page 52 - AI for Good Innovate for Impact
P. 52

AI for Good Innovate for Impact



                      4      Sequence Diagram


































                      5      References

                      [1]  Towards Automatic Evaluation for LLMs’ Clinical Capabilities: Metric, Data, and Algorithm.
                           2024. arXiv. https:// arxiv .org/ abs/ 2403 .16446.
                      [2]  Learning to Plan for Retrieval-Augmented Large Language Models from Knowledge
                           Graphs. 2024. arXiv. https:// arxiv .org/ abs/ 2406 .14282.
                      [3]  Towards Structured Understanding of Marketer Demands with Analogical Reasoning
                           Augmented LLMs. 2024. arXiv. https:// arxiv .org/ abs/ 2401 .04319.
                      [4]  KnowAgent: Knowledge-Augmented Planning for LLM-Based Agents. 2024. arXiv. https://
                           arxiv .org/ abs/ 2403 .03101.
                      [5]  RJUA-MedDQA: A Multimodal Benchmark for Medical Document Question Answering
                           and Clinical Reasoning. 2024. ACM Digital Library. https:// dl .acm .org/ doi/ 10 .1145/
                           3637528 .3671644.
                      [6]  Effectively PAIRing LLMs with Online Marketing via Progressive Prompting Augmentation.
                           2023. arXiv. https:// arxiv .org/ pdf/ 2312 .05276.
                      [7]  FoRAG: Factuality-Optimized Retrieval Augmented Generation for Web-Enhanced Long-
                           form Question Answering. 2024. ACM Digital Library. https:// dl .acm .org/ doi/ 10 .1145/
                           3637528 .3672065.
                      [8]  EDiT: A Local-SGD-Based Efficient Distributed Training Method for Large Language
                           Models. 2024. OpenReview. https:// openreview .net/ forum ?id = xtlMtbVfWu.
                      [9]  Customizable Combination of Parameter-Efficient Modules for Multi-Task Learning. 2023.
                           arXiv. https:// arxiv .org/ abs/ 2312 .03248.
                      [10]  Every FLOP Counts: Scaling a 300B Mixture-of-Experts LING LLM without Premium GPUs.
                           2025. arXiv. https:// arxiv .org/ abs/ 2503 .05139.
                      [11]  Alipay. 2024. “RJUA_Ant_QA.” GitHub. https:// github .com/ alipay/ RJU _Ant _QA.
                      [12]  Alipay-Med. 2024. “medDQA_benchmark.” GitHub. https:// github .com/ Alipay -Med/
                           medDQA _benchmark.
                      [13]  Alipay-Med. 2024. “SPs_benchmark.” GitHub.  https:// github .com/ Alipay -Med/ SPs
                           _benchmark.






                  16
   47   48   49   50   51   52   53   54   55   56   57