Page 372 - AI for Good Innovate for Impact
P. 372
AI for Good Innovate for Impact
[2] ITU-R, Recommendation P.840-8: Attenuation and signal loss in rain for radio
communication systems, International Telecommunication Union, Geneva, Switzerland,
Sep. 2019. [Online]. Available: https:// www .fccdecastro .com .br/ pdf/ ITU -RP840 -8 .pdf
[3] ITU-R, Recommendation P.530-18: Propagation data and prediction methods required
for the design of terrestrial line-of-sight systems, International Telecommunication Union,
Geneva, Switzerland, Sep. 2021. [Online]. Available: https:// www .itu .int/ rec/ R -REC -P .530
-18 -202109 -I/ en
[4] DeepSense 6G, Radar-Aided Beam Prediction Toolkit, [Online]. Available: https:// www
.deepsense6g .net/ radar -aided -beam -prediction/
[5] J. Zhang, G. Zheng, Y. Zhang, I. Krikidis, and K.-K. Wong, "Deep Learning Based Predictive
Beamforming Design," arXiv preprint arXiv:2302.01035, Feb. 2023. [Online]. Available:
https:// arxiv .org/ abs/ 2302 .01035
[6] F. B. Mismar, B. L. Evans, and A. Alkhateeb, "Deep Reinforcement Learning for 5G
Networks: Joint Beamforming, Power Control, and Interference Coordination," arXiv
preprint arXiv:1907.00123, Jun. 2019. [Online]. Available: https:// arxiv .org/ abs/ 1907
.00123
[7] OpenMMLab, “OpenMMLab: Open-Source Computer Vision Algorithm System,” GitHub
organization, 2018–2025. [Online]. Available: https:// github .com/ open -mmlab
[8] [1] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal Policy
Optimization Algorithms,” *arXiv preprint arXiv:1707.06347*, Jul. 2017. [Online].
Available: https:// arxiv .org/ abs/ 1707 .06347
336

