Page 30 - Preliminary Analysis Towards a Standardized Readiness Framework - Interim Report
P. 30

Preliminary Analysis Towards a Standardized Readiness Framework



                      [40] ITU-T FGAI4A-I-142 “Use case on Design and development of an IoT-enabled soil moisture
                      sensing system”, ICAR-IIWM, TEC, DoT, India.

                      [41] IEEE DataPort, https:// ieee -dataport .org/

                                        TM
                      [42] IEEE Std 802.11 -2020, IEEE Standard for Information Technology—Telecommunications
                      and Information Exchange between Systems—Local and Metropolitan Area Networks—Specific
                      Requirements—Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
                      Specifications. (2021).

                      [43] India at a glance, FAO in India, Food and Agriculture Organization of the United Nations.
                      https:// www .fao .org/ india/ fao -in -india/ india -at -a -glance/ en/

                      [44] Traffic accidents still No. 1 killer in KSA. (2016, January 26). Arab News. https:// www
                      .arabnews .com/ saudi -arabia/ news/ 870636

                      [45] Vaneikemahommes, Q. (VOLPE). (n.d.). Functional Safety Assessment of a Generic,
                      Conventional, Hydraulic Braking System With Antilock Brakes, Traction Control, and Electronic
                      Stability Control.

                      [46] Weather Based Agro Advisory Services. (n.d.). Retrieved May 9, 2024, from https:// pib .gov
                      .in/ pib .gov .in/ Pressreleaseshare .aspx ?PRID = 1913976

                      [47] Fang, J., Xu, R., Yang, Y., Li, X., Zhang, S., Peng, X., & Liu, X. (2017). Introduction and
                      simulation of dedicated short range communication. 2017 IEEE 5th International Symposium
                      on Electromagnetic Compatibility (EMC-Beijing), 1–10. https:// doi .org/ 10 .1109/ EMC -B .2017
                      .8260392

                      [48] Li, L., Sali, A., Noordin, N. K., Ismail, A., & Hashim, F. (2023). Prediction of Peatlands Forest
                      Fires in Malaysia Using Machine Learning. Forests, 14(7), Article 7. https:// doi .org/ 10 .3390/
                      f14071472

                      [49] Vanitha, V., Rajathi, N., & Prakash Kumar, K. (2023). AI-Based Agriculture Recommendation
                      System for Farmers. In J. C. Bansal & M. S. Uddin (Eds.), Computer Vision and Machine Learning
                      in Agriculture, Volume 3 (pp. 91–103). Springer Nature. https:// doi .org/ 10 .1007/ 978 -981 -99
                      -3754 -7 _7

                      [50] “AI-PROTECT-IMEC: AI-powered Protection & Resilience Optimization for IMEC”, Asian
                      Disaster Preparedness Center (ADPC).

                      [51] Rubí, J. N. S., de Carvalho, P. H. P., & Gondim, P. R. L. (2023). Application of machine
                      learning models in the behavioral study of forest fires in the Brazilian Federal District region.
                      Engineering Applications of Artificial Intelligence, 118, 105649. https:// doi .org/ 10 .1016/ j
                      .engappai .2022 .105649

                      [52] Khan, A., Gupta, S., & Gupta, S. K. (2022). Emerging UAV technology for disaster detection,
                      mitigation, response, and preparedness. Journal of Field Robotics, 39(6), 905–955. https:// doi
                      .org/ 10 .1002/ rob .22075

                      [53] Hu, X., Li, S., Huang, T., Tang, B., Huai, R., & Chen, L. (2023). How Simulation Helps Autonomous
                      Driving:A Survey of Sim2real, Digital Twins, and Parallel Intelligence (arXiv:2305.01263). arXiv.
                      http:// arxiv .org/ abs/ 2305 .01263





                  22
   25   26   27   28   29   30   31   32   33   34   35