Page 28 - Preliminary Analysis Towards a Standardized Readiness Framework - Interim Report
P. 28

Preliminary Analysis Towards a Standardized Readiness Framework



                      [10] Dai, J., Teng, J., Bai, X., Shen, Z., & Xuan, D. (2010). Mobile phone based drunk driving
                      detection. 2010 4th International Conference on Pervasive Computing Technologies for
                      Healthcare, 1–8. https:// doi .org/ 10 .4108/ ICST .PERVASIVEHEALTH2010 .8901

                      [11] Edge Impulse—The Leading edge AI platform, https:// edgeimpulse .com/

                      [12] Distracted Driver Dataset, http:// heshameraqi .github .io/ distraction _detection

                      [13] Find Open Datasets and Machine Learning Projects | Kaggle.  https:// www .kaggle .com/
                      datasets

                      [14] ICT in Agriculture (Updated Edition), https:// www .fao .org/ family -farming/ detail/ fr/ c/
                      1028927/

                      [15] Ingress Protection (IP) ratings, https:// www .iec .ch/ ip -ratings

                      [16] Jabbari, A., Humayed, A., Reegu, F. A., Uddin, M., Gulzar, Y., & Majid, M. (2023). Smart
                      Farming Revolution: Farmer’s Perception and Adoption of Smart IoT Technologies for Crop
                      Health Monitoring and Yield Prediction in Jizan, Saudi Arabia. Sustainability, 15(19), Article 19.
                      https:// doi .org/ 10 .3390/ su151914541

                      [17] Jabbari, A., Teli, T. A., Masoodi, F., Reegu, F. A., Uddin, M., & Albakri, A. (2024). Prioritizing
                      factors for the adoption of IoT-based smart irrigation in Saudi Arabia: A GRA/AHP approach.
                      Frontiers in Agronomy, 6. https:// doi .org/ 10 .3389/ fagro .2024 .1335443

                      [18] Kashevnik, A., Shchedrin, R., Kaiser, C., & Stocker, A. (2021). Driver Distraction Detection
                      Methods: A Literature Review and Framework. IEEE Access, 9, 60063–60076. https:// doi .org/
                      10 .1109/ ACCESS .2021 .3073599

                      [19] Mansuri, F. (2015). Road safety and road traffic accidents in Saudi Arabia: Systematic review
                      of existing evidence. SMJ 2015; 36 (4). Saudi Medical Journal, 36.

                      [20] Muniasamy, A. (2020). Machine Learning for Smart Farming: A Focus on Desert Agriculture.
                      2020 International Conference on Computing and Information Technology (ICCIT-1441), 1–5.
                      https:// doi .org/ 10 .1109/ ICCIT -144147971 .2020 .9213759

                      [21] tinyML Foundation, https:// www .tinyml .org/

                      [22] oneM2M Sets Standards For The Internet Of Things & M2M, https:// www .onem2m .org/

                      [23] Prathiba, S. B., Raja, G., Dev, K., Kumar, N., & Guizani, M. (2021). A Hybrid Deep
                      Reinforcement Learning For Autonomous Vehicles Smart-Platooning. IEEE Transactions on
                      Vehicular Technology, 70(12), 13340–13350. https:// doi .org/ 10 .1109/ TVT .2021 .3122257

                      [24] Rezgui, J., Gagne, E., Blain, G., St-Pierre, O., & Harvey, M. (2020). Platooning of Autonomous
                      Vehicles with Artificial Intelligence V2I Communications and Navigation Algorithm. 2020 Global
                      Information Infrastructure and Networking Symposium (GIIS), 1–6. https:// doi .org/ 10 .1109/
                      GIIS50753 .2020 .9248490
                      [25] Sabet, M., Zoroofi, R. A., Sadeghniiat-Haghighi, K., & Sabbaghian, M. (2012). A new
                      system for driver drowsiness and distraction detection. 20th Iranian Conference on Electrical
                      Engineering (ICEE2012), 1247–1251. https:// doi .org/ 10 .1109/ IranianCEE .2012 .6292547






                  20
   23   24   25   26   27   28   29   30   31   32   33