Page 172 - Kaleidoscope Academic Conference Proceedings 2024
P. 172
2024 ITU Kaleidoscope Academic Conference
an eye condition, AI can predict disease progression by [11] A. Albelaihi, D. M. Ibrahim, Deepdiabetic: An
continuously analyzing data from regular eye exams and identification system of diabetic eye diseases using deep
imaging studies. This analytics can also provide personalized neural networks, IEEE Access 12 (2024) 10769–10789.
treatment recommendations based on individual patient data
[12] Diabetic retinopathy detection aptos dataset,
in future.
https://www.kaggle.com/competitions/aptos2019-
blindness-detection.
REFERENCES
[13] K. Simonyan, A. Zisserman, Very deep convolutional
[1] S. Zhu, C. Xiong, Q. Zhong, Y. Yao, Diabetic
networks for large-scale image recognition, arXiv
retinopathy classification with deep learning via fundus
1409.1556 (09 2014).
images: A short survey, IEEE Access 12 (2024).
[14] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning
[2] Y. Yang, Z. Cai, S. Qiu, P. Xu, A novel transformer for image recognition, in: 2016 IEEE Conference on
model with multiple instance learning for diabetic Computer Vision and Pattern Recognition (CVPR),
retinopathy classification, IEEE Access 12 (2024) 2016, pp. 770–778.
6768–6776.
[15] A. Vargha, H. D. Delaney, The Kruskal-Wallis test
[3] C. Lahmar, A. Idri, On the value of deep learning for and stochastic homogenity, Journal of Educational and
diagnosing diabetic retinopathy, Health and Technology Behavioral Statistics (1998) 170–192.
12 (2021) 1–17.
[16] M. Agarwal, A. Singhal, Fusion of pattern-based
[4] C. Lahmar, A. Idri, Deep hybrid architectures for and statistical features for schizophrenia detection
diabetic retinopathy classification, Computer Methods from eeg signals, Medical Engineering Physics 112
in Biomechanics and Biomedical Engineering: Imaging (2023) 103949. doi:10.1016/j.medengphy.2023.
& Visualization 11 (2) (2023) 166–184. 103949.
[5] S. H. Kassani, P. Hosseinzadeh Kassani, [17] A. Singhal, M. Agarwal, An automatic risk assessment
R. Khazaeinezhad, M. Wesolowski, K. Schneider, system for sudden cardiac death using look ahead
R. Deters, Diabetic retinopathy classification using a pattern, Multimedia Tools and Applications 83 (2023)
modified xception architecture, 2019. 1–16. doi:10.1007/s11042-023-16548-7.
[6] G. Deshpande, Y. Govardhan, A. Jain, Machine
learning-based diabetic retinopathy detection: A
comprehensive study using inceptionv3 model, in:
2024 ASU International Conference in Emerging
Technologies for Sustainability and Intelligent Systems
(ICETSIS), 2024, pp. 994–999.
[7] S. Siddarth, S. Chokkalingam, Densenet 121 framework
for automatic feature extraction of diabetic retinopathy
images, in: 2024 International Conference on Emerging
Systems and Intelligent Computing (ESIC), 2024, pp.
338–342.
[8] R. Chandra, S. Tiwari, S. S. Kumar, S. Agarwal,
Diabetic retinopathy prediction based on cnn and
alexnet model, in: 2024 14th International Conference
on Cloud Computing, Data Science Engineering
(Confluence), 2024, pp. 382–387.
[9] M. Farag, M. A. Fouad, A. T. Abdel-Hamid, Automatic
severity classification of diabetic retinopathy based on
densenet and convolutional block attention module,
IEEE Access 10 (2022) 38299–38308.
[10] S. Dhir, R. Bala, N. Goel, A. Sharma, Improved transfer
learning approach for diabetic retinopathy screening,
in: 2023 10th International Conference on Signal
Processing and Integrated Networks (SPIN), 2023, pp.
451–456.
– 128 –