Page 172 - Kaleidoscope Academic Conference Proceedings 2024
P. 172

2024 ITU Kaleidoscope Academic Conference




           an eye condition, AI can predict disease progression by  [11] A. Albelaihi, D. M. Ibrahim, Deepdiabetic:  An
           continuously analyzing data from regular eye exams and  identification system of diabetic eye diseases using deep
           imaging studies. This analytics can also provide personalized  neural networks, IEEE Access 12 (2024) 10769–10789.
           treatment recommendations based on individual patient data
                                                              [12] Diabetic  retinopathy  detection  aptos  dataset,
           in future.
                                                                  https://www.kaggle.com/competitions/aptos2019-
                                                                  blindness-detection.
                            REFERENCES
                                                              [13] K. Simonyan, A. Zisserman, Very deep convolutional
            [1] S. Zhu, C. Xiong, Q. Zhong, Y. Yao, Diabetic
                                                                  networks for large-scale image recognition, arXiv
               retinopathy classification with deep learning via fundus
                                                                  1409.1556 (09 2014).
               images: A short survey, IEEE Access 12 (2024).
                                                              [14] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning
            [2] Y. Yang, Z. Cai, S. Qiu, P. Xu, A novel transformer  for image recognition, in: 2016 IEEE Conference on
               model with multiple instance learning for diabetic  Computer Vision and Pattern Recognition (CVPR),
               retinopathy classification, IEEE Access 12 (2024)  2016, pp. 770–778.
               6768–6776.
                                                              [15] A. Vargha, H. D. Delaney, The Kruskal-Wallis test
            [3] C. Lahmar, A. Idri, On the value of deep learning for  and stochastic homogenity, Journal of Educational and
               diagnosing diabetic retinopathy, Health and Technology  Behavioral Statistics (1998) 170–192.
               12 (2021) 1–17.
                                                              [16] M. Agarwal, A. Singhal, Fusion of pattern-based
            [4] C. Lahmar, A. Idri, Deep hybrid architectures for  and statistical features for schizophrenia detection
               diabetic retinopathy classification, Computer Methods  from eeg signals, Medical Engineering Physics 112
               in Biomechanics and Biomedical Engineering: Imaging  (2023) 103949. doi:10.1016/j.medengphy.2023.
               & Visualization 11 (2) (2023) 166–184.             103949.

            [5] S.  H.  Kassani,  P.  Hosseinzadeh  Kassani,  [17] A. Singhal, M. Agarwal, An automatic risk assessment
               R. Khazaeinezhad, M. Wesolowski, K. Schneider,     system for sudden cardiac death using look ahead
               R. Deters, Diabetic retinopathy classification using a  pattern, Multimedia Tools and Applications 83 (2023)
               modified xception architecture, 2019.              1–16. doi:10.1007/s11042-023-16548-7.
            [6] G. Deshpande, Y. Govardhan, A. Jain, Machine
               learning-based diabetic retinopathy detection:  A
               comprehensive study using inceptionv3 model, in:
               2024 ASU International Conference in Emerging
               Technologies for Sustainability and Intelligent Systems
               (ICETSIS), 2024, pp. 994–999.

            [7] S. Siddarth, S. Chokkalingam, Densenet 121 framework
               for automatic feature extraction of diabetic retinopathy
               images, in: 2024 International Conference on Emerging
               Systems and Intelligent Computing (ESIC), 2024, pp.
               338–342.
            [8] R. Chandra, S. Tiwari, S. S. Kumar, S. Agarwal,
               Diabetic retinopathy prediction based on cnn and
               alexnet model, in: 2024 14th International Conference
               on Cloud Computing, Data Science  Engineering
               (Confluence), 2024, pp. 382–387.

            [9] M. Farag, M. A. Fouad, A. T. Abdel-Hamid, Automatic
               severity classification of diabetic retinopathy based on
               densenet and convolutional block attention module,
               IEEE Access 10 (2022) 38299–38308.
           [10] S. Dhir, R. Bala, N. Goel, A. Sharma, Improved transfer
               learning approach for diabetic retinopathy screening,
               in:  2023 10th International Conference on Signal
               Processing and Integrated Networks (SPIN), 2023, pp.
               451–456.




                                                          – 128 –
   167   168   169   170   171   172   173   174   175   176   177