Page 125 - Kaleidoscope Academic Conference Proceedings 2024
P. 125

Innovation and Digital Transformation for a Sustainable World




                            REFERENCES                            [12] Ghosh,  S.,  Hazra,  A.,  &  Raj,  A.  (2020).  A
                                                                     comparative  study  of  different  classification
               [1] A.  Dingli,  L.  Mercieca,  R.  Spina,  and  M.  Galea,  techniques  for  sentiment  analysis.  International
                  “Event  detection  using  social  sensors,”  in  2nd  Journal  of  Synthetic  Emotions,  11(1),  49–  57.
                  International  Conference  on  Information  and    https://doi.org/10.4018/ijse.20200101.oa
                  Communication   Technologies   for   Disaster
                  Management, 2015.                               [13] Xu,  Q.,  Chang,  V.,  &  Jayne,  C.  (2022).  A
                                                                     systematic review of social media-based sentiment
               [2] S.  Takeshi,  M.  Okazaki,  and  Y.  Matsuo,      analysis: Emerging trends and challenges. Decision
                  “Earthquake  shakes  twitter  users:  real-time  event  Analytics   Journal,   3,     100073.
                  detection by social sensors,” in 19th international  https://doi.org/10.1016/j.dajour.2022.100073
                  conference on World wide web, ACM, 2010.
                                                                  [14] Aspect  based  sentiment  analysis  on  product
               [3] J. Guerrero, J. Olivas, F. Romero, and E. Viedma,  reviews.  (2018,  December  1).  IEEE  Conference
                  “Sentiment  analysis:  a  review  and  comparative  Publication    |       IEEE       Xplore.
                  analysis  of  web  services,”  Information  Sciences,  https://ieeexplore.ieee.org/document/9096796
                  vol. 311, pp. 18–38, 2015.
                                                                  [15] Yan-Yan  Z,  Bing  Q,  Ting  L  (2010)  Integrating
               [4] Lamba, Manika & Margam, Madhusudhan. (2022).      intra-and inter-document evidences for improving
                  Sentiment  Analysis.  10.1007/978-3-030-85085-     sentence  sentiment  classification.  Acta  Autom
                  2_7.                                               Sinica 36(10):1417–1425

               [5] J. Guerrero, J. Olivas, F. Romero, and E. Viedma,  [16] Moreo A, Romero M, Castro J, Zurita JM (2012)
                  “Sentiment  analysis:  a  review  and  comparative  Lexicon-based comments-oriented news sentiment
                  analysis  of  web  services,”  Information  Sciences,  analyzer  system.  Expert  Syst  Appl  39(10):9166–
                  vol. 311, pp. 18–38, 2015                          9180

               [6] S.  Wan  and  C.  Paris,  “Improving  government  [17] Joshi,  Aditya,  et  al.  ―A  Fall-Back  Strategy  for
                  services  with  social  media  feedback,”  in  19th  Sentiment Analysis in Hindi: A ... - IIT Bombay.‖
                  international  conference  on  Intelligent  User   www.Cse.Iitb.Ac.In,
                  Interfaces, pp. 27–36, 2014.                       www.cse.iitb.ac.in/~adityaj/HindiSentiWordnet_A
                                                                     dityaJ.pdf.
               [7] K, K. P. (2020, August 9). A Literature review on
                  application  of  sentiment  analysis  using  Machine  [18] HOMS: Hindi opinion mining system. (2015, July
                  learning                        techniques.        1).  IEEE  Conference  Publication  |  IEEE  Xplore.
                  https://papers.ssrn.com/sol3/papers.cfm?abstract_i  https://ieeexplore.ieee.org/document/7232906
                  d=3674982
                                                                  [19] Sentiment  analysis  of  movie  review  data  using
               [8] Yaakub, M. R., Latiffi, M. I. A., & Zaabar, L. S.  Senti-lexicon algorithm. (2016). IEEE Conference
                  (2019). A review on sentiment analysis techniques  Publication     |       IEEE       Xplore.
                  and applications. IOP Conference Series: Materials  https://ieeexplore.ieee.org/document/7912069
                  Science  and  Engineering,  551(1),  012070.
                  https://doi.org/10.1088/1757-899x/551/1/012070  [20] Kour,  K.,  Kour, J.,  &  Singh,  P.  (2020).  Lexicon-
                                                                     Based  Sentiment  analysis.  In  Lecture  notes  in
               [9] Ligthart, A., Çatal, Ç., & Teki̇Nerdoğan, B. (2021).  electrical   engineering   (pp.   1421–1430).
                  Systematic reviews in sentiment analysis: a tertiary  https://doi.org/10.1007/978-981-15-5341- 7_108
                  study. Artificial Intelligence Review, 54(7), 4997–
                  5053. https://doi.org/10.1007/s10462-021-09973-3  [21] Joshi, Vrunda, and Vipul Vekariya. An Approach
                                                                     to Sentiment Analysis on Gujarati Tweets. Vol. 10,
               [10] Tan,  K.  L.,  Lee,  C.  P.,  &  Lim,  K.  M.  (2023).  A  no. 5, 2017, pp. 1487–1493.
                  survey of sentiment analysis: Approaches, datasets,
                  and future research. Applied Sciences, 13(7), 4550.  [22] Ghosal,  T.,  Das,  S.,  &  Bhattacharjee,  S.  (2015).
                  https://doi.org/10.3390/app13074550                Sentiment analysis on (Bengali horoscope) corpus.
                                                                     www.researchgate.net/publication.
               [11] Rao, A. C., Rao, A. C., & Kulkarni, C. (2022). A  https://doi.org/10.1109/indicon.2015.7443551
                  survey on sentiment analysis methods, applications,
                  and  challenges.  Artificial  Intelligence  Review,  [23] Kaur,  A.,  &  Gupta,  V.  (2014).  N-Gram  based
                  55(7), 5731–5780. https://doi.org/10.1007/s10462-  approach  for  opinion  mining  of  Punjabi  text.  In
                  022-10144-1                                        Lecture  Notes  in  Computer  Science  (pp.  81–88).
                                                                     https://doi.org/10.1007/978-3-319- 13365-2_8





                                                           – 81 –
   120   121   122   123   124   125   126   127   128   129   130