Page 122 - Kaleidoscope Academic Conference Proceedings 2024
P. 122

2024 ITU Kaleidoscope Academic Conference















               1. Dataset                      2. POS Text                    3. Sentiment Detection
                  Generation                       Preparation                    and feature extraction
                                                                                  using
                   Collect English,                  Stop Word
                  Hindi and Gujarati               Removal using
                  words also Collect                stop word list.              Bag of Words method,
                     Social Media                                                Count Vectorizer, TF-
                  comments and post                                              IDF, Word2Vec, N-
                    in Code Mixed                                                Gram, etc.
                      language.                                                   1. Text Processing
                                                                                  2. Create Vocabulary
                                                    Tokenization
                   Prepare Dataset                  using NLTK.                   3. Text Vectorization
                 from collected data.






              4. Polarity Opinion Classifier


                                       Polarization Recognition by

                                          1) Support Vector Machine
                                          2) Random Forest
                                          3) Naive Bayes
                                          4) K-Nearest
                                          5) Logistic Regression, etc.








                  Strongly          Softly Positive       Neutral         Softly Negative        Strongly
               Positive Review          Review            Review             Review              Negative








                            5. Performance evaluation: Accuracy, Precision, Recall & F-Score


                                                             sda
                   Fig.3.  Framework for Fine Grained Sentiment Analysis for Code-Mixed Languages (FGSACML)









                                                           – 78 –
   117   118   119   120   121   122   123   124   125   126   127