Page 45 - AI Ready – Analysis Towards a Standardized Readiness Framework
P. 45
AI Ready – Analysis Towards a Standardized Readiness Framework
[58] Adobor, H., & Yawson, R. (2022). The promise of artificial intelligence in combating public
corruption in the emerging economies: A conceptual framework. Science and Public Policy.
[59] U-Ask, “A unified AI-powered chatbot for the UAE’s government services” https:// ask .u
.ae/ en/
[60] Siti Nur Aisyah Mohd Robi, Norulhusna Ahmad, Mohd Azri Mohd Izhar, Hazilah Mad Kaidi
and Norliza Mohd Noor, “Utilizing UAV Data for Neural Network-based Classification of Melon
Leaf Diseases in Smart Agriculture” International Journal of Advanced Computer Science and
Applications (IJACSA), 15(1), 2024. http:// dx .doi .org/ 10 .14569/ IJACSA .2024 .01501119
[61] OMACS, “Digital twins for AI based xapps in open RAN for smart agriculture in 5G”, available
from ITU AI for Good-Innovate for Impact, Final Report 2024, https:// www .itu .int/ net/ epub/ TSB/
2024 -AI -for -Good -Innovate -for -Impact -final -report/ index .html #p = 1
[62] ITU-T Recommendation, Y.3179 : Architectural framework for machine learning model
serving in future networks including IMT-2020 (itu.int)
[63] ITU-T Recommendation, Y.3172 : Architectural framework for machine learning in future
networks including IMT-2020 (itu.int)
[64] ITU-T Recommendation, Y.3181 : Architectural framework for machine learning sandbox
in future networks including IMT-2020 (itu.int)
[65] CSEM, Aurora weather stations dataset, https:// aurora .portal .csem .ch/ dataset .html
[66] ITU AI for Good TinyML Challenge “Next-Gen tinyML Smart Weather Station Challenge
2024 “ https:// challenge .aiforgood .itu .int/ match/ matchitem/ 91
[67] Next-Gen tinyML Smart Weather Station Challenge 2024 Report, https:// github .com/ ITU
-AI -ML -in -5G -Challenge/ ITU -2024 -GenStorm -Submission -Next -Gen -TinyML -Smart -Weather
-Station/ blob/ main/ Next -Gen -TinyML -Smart -Weather -Station -GenStorm -Report .pdf.
[68] Uddin, K.M.M. et al. (2024). Toward Early Detection of Neonatal Birth Asphyxia Utilizing
Ensemble Machine Learning Approach. In: Uddin, M.S., Bansal, J.C. (eds) Proceedings of
International Joint Conference on Advances in Computational Intelligence. IJCACI 2022.
Algorithms for Intelligent Systems. Springer, Singapore. https:// doi .org/ 10 .1007/ 978 -981 -97
-0180 -3 _4
[69] “Notun Kuri” Mobile Application, Notun Kuri (notun-kuri.netlify.app)
[70] ITU AI for Good-Innovate for Impact, Final Report 2024, https:// www .itu .int/ net/ epub/ TSB/
2024 -AI -for -Good -Innovate -for -Impact -final -report/ index .html #p = 1
[71] Ahmed, Z., Gui, D., murtaza, G., Yunfei, L., & Ali, S. (2023, August 11). An Overview of Smart
Irrigation Management for Improving Water Productivity under Climate Change in Drylands.
https:// www .mdpi .com/ 2073 -4395/ 13/ 8/ 2113 #: ~: text = Smart %20irrigation %20offers %20better
%20irrigation ,and %20increase %20yields %20 %5B25 %5D
[72] Dr. Dimple, & Rajput, j. (2023, july). Efficient Irrigation Water Management Tools and
Techniques for Sustainable Agriculture. https:// www .researchgate .net/ publication/ 372761206
_Chapter _ -1 _Efficient _Irrigation _Water _Management _Tools _and _Techniques _for _Sustainable
_Agriculture _Dimple _and _Jitendra _Rajput
38