Page 44 - AI Ready – Analysis Towards a Standardized Readiness Framework
P. 44
AI Ready – Analysis Towards a Standardized Readiness Framework
[44] Traffic accidents still No. 1 killer in KSA. (2016, January 26). Arab News. https:// www
.arabnews .com/ saudi -arabia/ news/ 870636
[45] Vaneikemahommes, Q. (VOLPE). (n.d.). Functional Safety Assessment of a Generic,
Conventional, Hydraulic Braking System with Antilock Brakes, Traction Control, and Electronic
Stability Control.
[46] Weather Based Agro Advisory Services. (n.d.). Retrieved May 9, 2024, from https:// ccari
.icar .gov .in/ agroadvisory .html #: ~: text = Agro %2Dadvisory %20services %20are %20the ,disease
%2C %20water %20and %20input %20management.
[47] Fang, J., Xu, R., Yang, Y., Li, X., Zhang, S., Peng, X., & Liu, X. (2017). Introduction and
simulation of dedicated short range communication. 2017 IEEE 5th International Symposium
on Electromagnetic Compatibility (EMC-Beijing), 1-10. https:// doi .org/ 10 .1109/ EMC -B .2017
.8260392
[48] Li, L., Sali, A., Noordin, N. K., Ismail, A., & Hashim, F. (2023). Prediction of Peatlands Forest
Fires in Malaysia Using Machine Learning. Forests, 14(7), Article 7. https:// doi .org/ 10 .3390/
f14071472
[49] Vanitha, V., Rajathi, N., & Prakash Kumar, K. (2023). AI-Based Agriculture Recommendation
System for Farmers. In J. C. Bansal & M. S. Uddin (Eds.), Computer Vision and Machine Learning
in Agriculture, Volume 3 (pp. 91-103). Springer Nature. https:// doi .org/ 10 .1007/ 978 -981 -99
-3754 -7 _7
[50] “AI-PROTECT-IMEC: AI-powered Protection & Resilience Optimization for IMEC”, Asian
Disaster Preparedness Center (ADPC).
[51] Rubí, J. N. S., de Carvalho, P. H. P., & Gondim, P. R. L. (2023). Application of machine
learning models in the behavioral study of forest fires in the Brazilian Federal District region.
Engineering Applications of Artificial Intelligence, 118, 105649. https:// doi .org/ 10 .1016/ j
.engappai .2022 .105649
[52] Khan, A., Gupta, S., & Gupta, S. K. (2022). Emerging UAV technology for disaster detection,
mitigation, response, and preparedness. Journal of Field Robotics, 39(6), 905-955. https:// doi
.org/ 10 .1002/ rob .22075
[53] Hu, X., Li, S., Huang, T., Tang, B., Huai, R., & Chen, L. (2023). How Simulation Helps Autonomous
Driving:A Survey of Sim2real, Digital Twins, and Parallel Intelligence (arXiv:2305.01263). arXiv.
http:// arxiv .org/ abs/ 2305 .01263
[54] OpenCV, Detection of ArUco Markers https:// docs .opencv .org/ 4 .x/ d5/ dae/ tutorial _aruco
_detection .html
[55] robotflow, Everything you need to build and deploy computer vision models, https://
roboflow .com/
[56] “MQTT: The Standard for IoT Messaging”, https:// mqtt .org/
[57] Aarvik, P. (2019). Artificial Intelligence–a promising anti-corruption tool in development
settings. U4Anti-Corruption Resource Centre.
37