Page 37 - ITU Journal Future and evolving technologies Volume 2 (2021), Issue 5 – Internet of Everything
P. 37

ITU Journal on Future and Evolving Technologies, Volume 2 (2021), Issue 5




         [21] Iqbal, W., Abbas, H., Daneshmand, M., Rauf, B., &  [32] Bagchi, S., Abdelzaher, T. F., Govindan, R., Shenoy,
             Bangash, Y. A. (2020), An In‑Depth Analysis of IoT Se‑  P., Atrey, A., Ghosh, P., & Xu, R. (2020), New Frontiers
             curity Requirements, Challenges, and Their Counter‑   in IoT: Networking, Systems, Reliability, and Security
             measures via Software‑De ined Security, IEEE Inter‑   Challenges, IEEE Internet of Things Journal, 7(12),
             net of Things Journal, 7(10), 10250‑10276.            11330‑11346.

         [22] Hassija, V., Chamola, V., Saxena, V., Jain, D., Goyal, P.,  [33] Jia, G., Zhu, Y., Li, Y., Zhu, Z., & Zhou, L. (2019),
             & Sikdar, B. (2019), A survey on IoT security: appli‑  Analysis of the Effect of the Reliability of the NB‑Iot
             cation areas, security threats, and solution architec‑  Network on the Intelligent System, IEEE Access, 7,
             tures, IEEE Access, 7, 82721‑82743.                   112809‑112820.

         [23] Giust, F., Cominardi, L., & Bernardos, C. J. (2015),  [34] Schulz, P., Matthe, M., Klessig, H., Simsek, M., Fet‑
             Distributed mobility management for future 5G net‑    tweis, G., Ansari, J., & Puschmann, A. (2017), Latency
             works: overview and analysis of existing approaches,  critical IoT applications in 5G: Perspective on the de‑
             IEEE Communications Magazine, 53(1), 142‑149.         sign of radio interface and network architecture, IEEE
                                                                   Communications Magazine, 55(2), 70‑78.
         [24] Shin, D., Yun, K., Kim, J., Astillo, P. V., Kim, J. N., & You,
             I. (2019), A security protocol for route optimization in  [35] Zhang, C., Sun, X., Zhang, J., Wang, X., Jin, S., & Zhu, H.
             DMM‑based smart home IoT networks, IEEE Access,       (2019), Throughput optimization with delay guaran‑
             7, 142531‑142550.                                     tee for massive random access of M2M communica‑
                                                                   tions in industrial IoT, IEEE Internet of Things Jour‑
         [25] Mikhaylov, K., Petaejaejaervi, J., & Haenninen, T.   nal, 6(6), 10077‑10092.
             (2016, May), Analysis of capacity and scalability of
             the LoRa low power wide area network technology,   [36] Moussa, H. G., & Zhuang, W. (2019), Energy‑and
             In European Wireless 2016; 22th European Wireless     delay‑aware two‑hop NOMA‑enabled massive cellu‑
             Conference; Proceedings of (pp. 1‑6). VDE.            lar IoT communications, IEEE Internet of Things Jour‑
                                                                   nal, 7(1), 558‑569.
         [26] Alsohaily, A., Sousa, E., Tenenbaum, A. J., & Maljevic,
             I. (2017, October), LoRaWAN radio interface analy‑  [37] Deng, Y., Chen, Z., Yao, X., Hassan, S., & Ibrahim, A.
             sis for North American frequency band operation, In   M. (2019), Parallel of loading in green and sustain‑
             Personal, Indoor, and Mobile Radio Communications     able mobile edge computing for delay‑constrained
             (PIMRC), 2017 IEEE 28th Annual International Sym‑     IoT system, IEEE Transactions on Vehicular Technol‑
             posium on (pp. 1‑6). IEEE.                            ogy, 68(12), 12202‑12214.

         [27] Reynders, B., Wang, Q., Tuset‑Peiro, P., Vilajosana, X.,
                                                                [38] Yi, C., & Cai, J. (2018), A truthful mechanism for
             & Pollin, S. (2018), Improving Reliability and Scala‑  scheduling delay‑constrained wireless transmissions
             bility of LoRaWANs Through Lightweight Scheduling,    in IoT‑based healthcare networks, IEEE Transactions
             IEEE Internet of Things Journal.                      on Wireless Communications, 18(2), 912‑925.
         [28] Rahman, M., & Saifullah, A. (2020), Integrating low‑  [39] Li, T., Ota, K., Wang, T., Li, X., Cai, Z., & Liu, A. (2019),
             power wide‑area networks for enhanced scalability     Optimizing the coverage via the UAVs with lower
             and extended coverage, IEEE/ACM Transactions on       costs for information‑centric Internet of Things, IEEE
             Networking, 28(1), 413‑426.
                                                                   Access, 7, 15292‑15309.
         [29] Adame, T., Bel, A., & Bellalta, B. (2019), Increasing  [40] Kwon, T., Choi, S. W., & Shin, Y. H. (2019), A com‑
             LPWAN scalability by means of concurrent multiband    prehensive design framework for network‑wide cost
             IoT technologies: an industry 4.0 use case, IEEE Ac‑  reduction in random access‑based wireless IoT net‑
             cess, 7, 46990‑47010.
                                                                   works, IEEE Communications Letters, 23(9), 1576‑
         [30] Ma, Z., Xiao, M., Xiao, Y., Pang, Z., Poor, H. V., &  1580.
             Vucetic, B. (2019), High‑reliability and low‑latency
             wireless communication for internet of things: chal‑  [41] Agiwal, M., Roy, A., & Saxena, N. (2016), Next genera‑
             lenges, fundamentals, and enabling technologies,      tion 5G wireless networks: A comprehensive survey,
             IEEE Internet of Things Journal, 6(5), 7946‑7970.     IEEE Communications Surveys & Tutorials, 18(3),
                                                                   1617‑1655.
         [31] Xing, L. (2020), Reliability in Internet of Things:
             Current status and future perspectives, IEEE Internet  [42] Buzzi, S., Chih‑Lin, I., Klein, T. E., Poor, H. V., Yang,
             of Things Journal, 7(8), 6704‑6721.                   C., & Zappone, A. (2016), A survey of energy‑ef icient
                                                                   techniques for 5G networks and challenges ahead,
                                                                   IEEE Journal on Selected Areas in Communications,
                                                                   34(4), 697‑709.





                                             © International Telecommunication Union, 2021                     25
   32   33   34   35   36   37   38   39   40   41   42