Page 93 - ITU Journal Future and evolving technologies Volume 2 (2021), Issue 4 – AI and machine learning solutions in 5G and future networks
P. 93

ITU Journal on Future and Evolving Technologies, Volume 2 (2021), Issue 4




          [2] ITU‑T .  ITU  AI/ML  in  5G  Challenge  (2019).  Available   [14] Qi,  H.,  Huang,  H.,  Hu,  Z.,  Wen,  X.,  &  Lu,  Z.
             at:   https://www.itu.int/en/ITU‑T/AI/challenge/      (2020).  “On‑demand  channel  bonding  in  heteroge‑
             2020/Pages/default.aspx                               neous  WLANs:  A  multi‑agent  deep  reinforcement
                                                                   learning approach”. Sensors, 20(10), 2789.
          [3] Wilhelmi,  F .,  Barrachina‑Muñoz,  S.,  Bellalta,  B.,  Cano,
             C.,  Jonsson,  A.,  &  Neu,  G.  (2019).  “Potential  and  pit‑   [15] Pan, C., Cheng, Y ., Yang, Z., & Zhang, Y . (2018, July).
             falls of multi‑armed bandits for decentralized spatial   “Dynamic  opportunistic  spectrum  access  with  chan‑
             reuse   in   WLANs”.   Journal   of   Network   and   nel  bonding  in  mesh  networks:  A  game‑theoretic
             Computer Applications, 127, 26‑42.                    approach”.  In  International  Conference  on  Machine
                                                                   Learning   and    Intelligent   Communications
          [4] Francesc   Wilhelmi.   (2020).   [ITU‑T   AI   Chal‑   (pp.  381‑390). Springer, Cham.
             lenge]   Input/Output   of   project   “Improv‑
             ing   the   capacity   of   IEEE   802.11   WLANs   [16] Bianchi,  G.  (2000).  “Performance  analysis  of  the
             through  Machine  Learning”  [Data  set].  Zenodo.    IEEE 802. 11 distributed coordination function”. IEEE
             http://doi.org/10.5281/zenodo.4106127                 Journal on selected areas in communications, 18(3),
                                                                   535‑547.
          [5] Bellalta,  B. (2016). IEEE 802.11 ax:  “High‑ef iciency
             WLANs”. IEEE Wireless Communications, 23(1), 38-46.  [17] Bellalta, B., Zocca, A., Cano, C., Checco, A., Barcelo, J.,
                                                                   & Vinel, A. (2014). “Throughput analysis in CSMA/CA
          [6] Lo ́ pez‑Pérez,   D.,     Garcia‑Rodriguez,    A.,     Galati‑   networks  using  continuous  time  Markov  networks:
             Giordano,  L.,   Kasslin,   M.,   &    Doppler,  K.  (2019).   A tutorial”. Wireless Networking for Moving Objects,
             “IEEE  802.11  be  extremely  high  throughput:  The   115‑133.
             next generation  of  Wi‑Fi  technology  beyond  802.11 ax”.
             IEEE Communications Magazine, 57(9), 113‑119.     [18] Baccelli,  F .,  &  Błaszczyszyn,  B.  (2009).  “Stochastic
                                                                   geometry and wireless networks (Vol. 1)”. Now Pub‑
          [7] Barrachina-Muñoz,   S., Wilhelmi,   F.,  &  Bellalta,   B.  lishers Inc.
                         dis-
                                                               [19] Feng,  H.,  Shu,  Y .,  Wang,  S.,  &  Ma,  M.  (2006,  June).
             tributed high-density WLANs”. IEEE Transactions on
                                                                   “SVM‑based models for predicting WLAN traf ic”. In
             Mobile Computing.
                                                                   2006 IEEE International Conference on Communica‑
          [8] Barrachina-Muñoz,    S.,   Wilhelmi,  F .,  &   Bellalta,  B.  tions (Vol. 2, pp. 597‑602). IEEE.
             (2019). “To overlap or not to overlap: Enabling chan‑
                                                               [20] Abbas,  M.,  Elhamshary,  M.,  Rizk,  H.,  Torki,  M.,  &
             nel bonding in high‑density WLANs”. Computer Net‑
                                                                   Youssef, M. (2019, March). “WiDeep:  WiFi‑based ac‑
             works, 152, 40‑53.
                                                                   curate  and  robust  indoor  localization  system  using
                                                                   deep  learning”.  In  2019  IEEE  International  Confer‑
          [9] Cao, R., &  Zhang, H. (2019). U.S. Patent Application No.
             16/435,899.                                           ence  on  Pervasive  Computing  and  Communications
                                                                   (PerCom (pp. 1‑10). IEEE.
          [10]                      &
                                                               [21] Davaslioglu,  K.,  Soltani,  S.,  Erpek,  T .,  &  Sagduyu,  Y .
                       adaptation
                                                                   (2019). “DeepWiFi:  Cognitive WiFi with deep learn‑
                       Mobile
                                                                   ing”. IEEE Transactions on Mobile Computing.
             Computing, 16(1), 243-256.
                                                               [22] Khan, M. A., Hamila, R., Al‑Emadi, N. A., Kiranyaz, S.,
          [11]  Huang,  P.,  Yang,  X.,  &  Xiao,  L.  (2016).  “Dynamic
             channel  bonding:  Enabling   lexible  spectrum  ag‑   & Gabbouj, M. (2020). “Real‑time throughput predic‑
             gregation”.  IEEE  Transactions  on  Mobile  Computing,   tion for cognitive Wi‑Fi networks”. Journal of Network
             15(12), 3042‑3056.                                    and Computer Applications, 150, 102499.
                                                               [23] Barrachina‑Muñoz, S., Wilhelmi, F ., Selinis, I., & Bel‑
          [12]  Chen,  Y.  D.,  Wu,  D.  R.,  Sung,  T.  C.,  &  Shih,  K.  P.
                                                                   lalta,  B.  (2019,  April).  “Komondor:  a  wireless
             (2018, April). “DBS: A dynamic bandwidth selection
                                                                   network simulator for next‑generation high‑density
             MAC protocol for channel bonding in IEEE 802.11 ac
                                                                   WLANs”. In 2019 Wireless Days (WD) (pp. 1‑8). IEEE.
             WLANs”. In 2018 IEEE Wireless Communications and
             Networking Conference (WCNC) (pp. 1-6). IEEE.     [24] Wilhelmi, F ., Barrachina‑Muñoz, S., Cano, C., Selinis,
                                                                   I., & Bellalta, B. (2021). “Spatial reuse in IEEE 802.11
          [13]  Nabil, A., Abdel-Rahman, M. J., & MacKenzie, A. B.  ax WLANs”. Computer Communications.
             (2017, October). “Adaptive channel bonding in wire-
             less LANs under demand uncertainty”. In 2017 IEEE  [25] ITU‑T , ML5G‑I‑237 (2020). “A compilation of prob‑
             28th  Annual  International  Symposium  on  Personal,  lem  statements  and  resources  for  ITU  Global  Chal‑
             Indoor,  and  Mobile  Radio  Communications  (PIMRC)  lenge  on  AI/ML  in  5G  networks”.  Available  on‑
             (pp. 1-7). IEEE.                                      line:   https://www.itu.int/en/ITU‑T/AI/challenge/
                                                                   2020/Documents/ML5G‑I‑237‑R5_v10.docx





                                             © International Telecommunication Union, 2021                    77
   88   89   90   91   92   93   94   95   96   97   98