Page 125 - ITU Journal Future and evolving technologies Volume 2 (2021), Issue 4 – AI and machine learning solutions in 5G and future networks
P. 125

ITU Journal on Future and Evolving Technologies, Volume 2 (2021), Issue 4


























                                           Fig. 11 – Accuracy and recall with different features






















                                             Fig. 12 – Training time with different features

                                Table 5 – Comparison of experimental results of different machine learning methods

                            Method                      XGBoost                     LightGBM
                       Evaluation Criteria    Precision  Recall  F‑measure  Precision  Recall  F‑measure
                         1: node‑down           1.00     1.00     1.00       1.00     1.00      1.00
                       3: interface‑down        0.99     1.00     0.99       0.99     0.97      0.98
                      5, 7: tap‑loss (delay)    0.88     1.00     0.93       0.87     1.00      0.93
                    9: ixnetwork‑bgp‑injection  1.00     1.00     1.00       1.00     1.00      1.00
                   11: ixnetwork‑bgp‑hijacking  1.00     0.71     0.83       1.00     0.70      0.82
                            Method                   Random Forest                 Decision Tree
                       Evaluation Criteria    Precision  Recall  F‑measure  Precision  Recall  F‑measure
                         1: node‑down           1.00     1.00     1.00       1.00     0.86      0.92
                       3: interface‑down        0.97     1.00     0.99       0.82     0.89      0.85
                      5, 7: tap‑loss (delay)    0.88     0.97     0.92       0.85     0.73      0.78
                    9: ixnetwork‑bgp‑injection  1.00     1.00     1.00       1.00     1.00      1.00
                   11: ixnetwork‑bgp‑hijacking  0.94     0.72     0.82       0.58     0.76      0.66
                            Method                       SVM                           MLP
                       Evaluation Criteria    Precision  Recall  F‑measure  Precision  Recall  F‑measure
                         1: node‑down           0.97     0.97     0.97       1.00     0.83      0.91
                       3: interface‑down        0.92     0.65     0.76       0.92     0.61      0.73
                      5, 7: tap‑loss (delay)    0.68     0.99     0.81       0.71     1.00      0.83
                    9: ixnetwork‑bgp‑injection  0.99     0.54     0.70       1.00     0.65      0.79
                   11: ixnetwork‑bgp‑hijacking  1.00     0.58     0.73       0.97     0.65      0.78








                                             © International Telecommunication Union, 2021                   109
   120   121   122   123   124   125   126   127   128   129   130