Page 81 - ITU Journal Future and evolving technologies Volume 2 (2021), Issue 3 – Internet of Bio-Nano Things for health applications
P. 81

ITU Journal on Future and Evolving Technologies, Volume 2 (2021), Issue 3




           [20] V. Jamali, A. Ahmadzadeh, W. Wicke, A. Noel,    [30] Zhuangkun Wei, Weisi Guo, Bin Li, Jerome
                and R. Schober. “Channel Modeling for Diffu‑          Charmet, and Chenglin Zhao. “High‑dimensional
                sive Molecular Communication—A Tutorial Re‑           metric combining for non‑coherent molecu‑
                view”. In: Proceedings of the IEEE 107.7 (2019),      lar signal detection”. In: IEEE Transactions on
                pp. 1256–1301. DOI: 10 . 1109 / JPROC . 2019 .        Communications 68.3 (2019), pp. 1479–1493.
                2919455.                                        [31] Nariman Farsad and Andrea Goldsmith. “Neural
           [21] Christian A Söldner, Eileen Socher, Vahid Ja‑        network detection of data sequences in commu‑
                mali, Wayan Wicke, Arman Ahmadzadeh, Hans‑            nication systems”. In: IEEE Transactions on Signal
                Georg Breitinger, Andreas Burkovski, Kathrin          Processing 66.21 (2018), pp. 5663–5678.
                Castiglione, Robert Schober, and Heinrich Sticht.
                                                                [32] Ling‑San Meng, Ping‑Cheng Yeh, Kwang‑Cheng
                “A survey of biological building blocks for syn‑
                                                                      Chen, and Ian F Akyildiz. “Optimal detection for
                thetic molecular communication systems”. In:
                                                                      diffusion‑based communications in the presence
                IEEE Communications Surveys & Tutorials (2020).
                                                                      of ISI”. In: 2012 IEEE Global Communications Con‑
           [22] M. Ş. Kuran, H. B. Yilmaz, I. Demirkol, N. Farsad,    ference (GLOBECOM). IEEE. 2012, pp. 3819–3824.
                and A. Goldsmith. “A Survey on Modulation Tech‑  [33] Hoda ShahMohammadian, Geoffrey G Messier,
                niques in Molecular Communication via Diffu‑          and Sebastian Magierowski. “Optimum receiver
                sion”. In: IEEE Communications Surveys Tutorials      for molecule shift keying modulation in diffusion‑
                23.1 (2021), pp. 7–28. DOI: 10 . 1109 / COMST .       based  molecular  communication  channels”.
                2020.3048099.                                         In: Nano Communication Networks 3.3 (2012),
           [23] Bhushan S Pattni and Vladimir P Torchilin. “Tar‑      pp. 183–195.
                geted drug delivery systems: Strategies and chal‑  [34] Hoda ShahMohammadian, Geoffrey G Messier,
                lenges”. In: Targeted drug delivery: Concepts and     and Sebastian Magierowski. “Modelling the recep‑
                design. Springer, 2015, pp. 3–38.                     tion process in diffusion‑based molecular com‑
           [24] Adam Noel, Karen C Cheung, and Robert Schober.        munication channels”. In: 2013 IEEE International
                “Improving receiver performance of diffusive          Conference on Communications Workshops (ICC).
                molecular communication with enzymes”. In:            IEEE. 2013, pp. 782–786.
                IEEE Transactions on NanoBioscience 13.1 (2014),  [35] Mohammad Upal Mahfuz, Dimitrios Makrakis,
                pp. 31–43.                                            and Hussein T Mouftah. “Strength based re‑
           [25] Rakesh K Jain and Triantafyllos Stylianopoulos.       ceiver architecture and communication range and
                “Delivering nanomedicine to solid tumors”. In: Na‑    rate dependent signal detection characteristics
                ture reviews Clinical oncology 7.11 (2010), p. 653.   of concentration encoded molecular communica‑
                                                                      tion”. In: 2012 Seventh International Conference on
           [26] Mauro Femminella, Gianluca Reali, and Athana‑
                                                                      Broadband, Wireless Computing, Communication
                sios V Vasilakos. “A molecular communications
                                                                      and Applications. IEEE. 2012, pp. 28–35.
                model for drug delivery”. In: IEEE transactions on
                nanobioscience 14.8 (2015), pp. 935–945.        [36] A Ozan Bicen, Caitlin M Austin, Ian F Akyildiz,
           [27] Ghalib H Alshammri, Walid KM Ahmed, and Victor        and Craig R Forest. “Ef icient sampling of bac‑
                B Lawrence. “Adaptive Batch Training Rule‑Based       terial signal transduction for detection of pulse‑
                Detection Scheme for ON‑OFF‑Keying Diffusion‑         amplitude modulated molecular signals”. In: IEEE
                Based Molecular Communications”. In: 2018 IEEE        Transactions on Biomedical Circuits and Systems
                13th Nanotechnology Materials and Devices Con‑        9.4 (2015), pp. 505–517.
                ference (NMDC). IEEE. 2018, pp. 1–4.            [37] Wanzhi Qiu, Thanh Cong Nguyen, and Efstra‑
           [28] S. Sharma, D. Dixit, and K. Deka. “Deep Learning      tios Ska idas. “Detection of weak nano‑biosensor
                based Symbol Detection for Molecular Communi‑         signals corrupted by shot noise”. In: 2013 13th
                cations”. In: 2020 IEEE International Conference      IEEE International Conference on Nanotechnology
                on Advanced Networks and Telecommunications           (IEEE‑NANO 2013). IEEE. 2013, pp. 305–310.
                Systems (ANTS). 2020, pp. 1–6. DOI: 10 . 1109 /  [38] Mohammad Upal Mahfuz, Dimitrios Makrakis,
                ANTS50601.2020.9342782.                               and Hussein T Mouftah. “A comprehensive anal‑
           [29] X. Qian, M. Di Renzo, and A. Eckford. “Molecular      ysis of strength‑based optimum signal detection
                Communications: Model‑Based and Data‑Driven           in concentration‑encoded molecular communica‑
                Receiver Design and Optimization”. In: IEEE Ac‑       tion with spike transmission”. In: IEEE Transac‑
                                                                      tions on NanoBioscience 14.1 (2015), pp. 67–83.
                cess 7 (2019), pp. 53555–53565.










                                            © International Telecommunication Union, 2021                     69
   76   77   78   79   80   81   82   83   84   85   86