Page 127 - Proceedings of the 2018 ITU Kaleidoscope
P. 127

Machine learning for a 5G future



















             (a) Linearly separable classes.  (b) Maximum margin.
                                                                          Figure 5 – Overfitted samples
                                                              where ρ is the margin width, ξ i is the cost paid of the ith
                                                              violating sample and C is a parameter that enables to tune the
                                                              tradeoff between the width of the margin and the amount of
                                                              violating samples.
                                                              If C is large, there will be fewer training errors, meaning
                                                              that fewer samples from the training set will be misclassified,
                                                              also known as overfitting. When overfitting occurs, as shown
                                                              by the dashed line in Fig. 5, classes are perfectly separated,
                                                              but the separation is greatly influenced by noise, potentially
                                                              leading to greater classification errors.
                       (c)  Margin  violation  and
                                                              On the contrary, when C is small, there will be more
                       misclassification.
                                                              misclassified samples, but the margin will be greater, as
                   Figure 4 – SVM using a linear classifier    showed by the grey continuous line in Fig. 5. To improve the
                                                              final result of the algorithm this parameter has to be chosen
           and M is the number of classes in the problem.     using cross-validation[8].

           1.6 Support Vector Machine                         1.7 Comparison

           When the classes are linearly separable, a straight line can be  The selection of the best algorithm heavily depends on the
           drawn that perfectly separates the classes and the margin is  nature of the problem and the features used. Nevertheless,
           the perpendicular distance between the closest points to the  SVM is less computationally demanding than kNN and is
           line from each class as seen in Fig. 4a. This method is called  easier to interpret but can identify only a limited set of
           Support vector Machine (SVM)[12]. Nevertheless, many  patterns. On the other hand, kNN can find very complex
           possible separating lines exists that separates the classes and  patterns but its output is more challenging to interpret[6].
           SVM finds the one with the widest margin (Fig. 4b). If the
           dimension of the sample is greater than three, the separating  2.  TRAINING SIMULATOR
           line becomes and hyperplane. The closest samples to the
           margin, or the ones that violates are called support vectors  A simulator was developed in order to model the received
           and are the only samples that are considered to define the  signals on-board a LEO satellite and, by using machine
           separating hyperplane[7].                          learning algorithms, determine whether the messages can
           When the classes are linearly separable, the wider the margin,  be decodified. In the machine learning model (Fig. 1), this
           the confidence in the classification is higher because it  simulator is the generator as it creates the signal x and also
           indicates that the classes are less similar. Usually, it is difficult  the supervisor as it labels the data (y signal).
           to obtain samples or data sets that are linearly separable and
           any separating hyperplane will not be useful. It is said that  2.1 Signal Generator and Supervisor
           the margin is violated by a sample whether it is beyond the
                                                              An ADS-B message consists of a preamble of 8µs and a data
           separating hyperplane as shown in Fig 4c with arrows marked
                                                              block of 112µs. The message is Manchester-coded, meaning
           as ‘1’. Also, the case where the samples are on the correct
                                                              that each bit is represented with two states (high and/or low)
           side, but are inside the margins has to be considered and an
                                                              that last half a bit time (see Fig. 6). Finally, the signal is
           example is marked with the arrow and ‘2’ in Fig. 4c.
                                                              modulated using on-off keying (OOK).
           To take into account violations, penalty is considered
                                                              Each plane transmits messages with random periodicity with
           proportional to the distance between each violating sample
                                                              mean of 161ms (i.e. 6 messages every second), to avoid
           and the corresponding margin. Then the problem is reduced
                                                              synchronized collisions with other aircraft.
           to the minimization of the risk::
                                                              In order to set the scenario, aircraft-to-satellite distances
                                                              were randomly generated considering 1000 planes uniformly
                                    Õ
                             1/ρ + C   ξ i               (5)  distributed in the footprint of a LEO satellite orbiting at
                                                          – 111 –
   122   123   124   125   126   127   128   129   130   131   132