Page 103 - ITU Journal - ICT Discoveries - Volume 1, No. 2, December 2018 - Second special issue on Data for Good
P. 103

ITU JOURNAL: ICT Discoveries, Vol. 1(2), December 2018




          [10]   D.  Radosavljevik,  and  P.  Vander  Putten,   [22]   Q. Ruiyun, L. Zhu, and B. Jiang, (2013), “Fault-
               “Large scale predictive modelling for micro-          tolerance  reconfigurable  control  for  MIMO
               simulation  of  3G  air  interface  load”,            Systems  using  online  fuzzy  identification”,
               Proceedings of the 20th  ACM  SIGKDD                  International Journal of Innovative Computing
               International Conference on Knowledge                 Information and Control,  vol.  9,  no.  10,
               Discovery   and   Data    Mining   KDD’14,            pp. 3915-3928.
               pp. 1620-1629, New York, USA, August 24-27,
               2014.                                           [18]   A. B. Adeyemo, “Soft Computing for weather
                                                                     and climate change studies”,  African Journal
          [11]   N.  S.  Jaddi,  S.  Abdullah,  and  A.  R.  Hamdan,   of Computing and ICT, vol.6, no. 2, pp. 77-90,
               “Multi-population cooperative bat algorithm-          2013.
               based  optimization  of  artificial  neural
               network  model”,  Information Sciences,  vol.   [19]   S. Firoozi, M. J. Sheikhdavoodi, and M. Sami,
               294, pp. 628-644, 2014.                               “Evaluating  the  ability  of  different  Artificial
                                                                     Intelligence-based  modelling  techniques  in
          [12]   V.  Aggarwal,  R.  Jana,  J.  Pang,  K.  K.         prediction of yield using energy inputs data of
               Ramakrishnan, and N. K. Shankaranarayanan,            Farms”,  Journal of  Life Science and
               “Characterizing  fairness  for  3G  wireless          Biomedicine, vol. 4, no. 4, pp. 305-311, 2014.
               networks”,  18  IEEE  Workshop on  Local  &
                             th
               Metropolitan Area Networks (LANMAN),            [20]   M.  Heydari,  and  P.  H.  Talaee,  “Prediction  of
               Chapel Hill, USA, 13-14 October, 2011.                flow  through  rockfill  dams  using  a  Neuro-
                                                                     Fuzzy Computing technique”,  The Journal of
          [13]   M.-S.  Kim,  and  S.-G.  Kong,  “Time  series       Mathematics and  Computer Science,  vol.  2,
               prediction using the parallel-structure fuzzy         no. 3, pp. 515-528, 2011.
               system”,  IEEE International Fuzzy Systems
               Conference Proceedings,  Seoul,  South  Korea,   [21]   S. Hemachandra, and R. V. S. Satyanarayana,
               pp. 934-938, 22-25 August, 1999.                      “Co-active Neuro-Fuzzy Inference System for
                                                                     prediction  of  electric  load”,  International
          [14]   A. Ghaffari, A. Khodayari, and F. Alimardani, H.    Journal  of Electrical and Electronics,  vol.  3,
               Sadati,     “MANFIS-Based        overtaking           no. 2, pp. 217-222, 2013.
               manoeuvre  modeling  and  prediction  of  a
               driver-vehicle-unit in real traffic flow”, 2012   [22]   S. K. Bhuvaneswari, P. Geetha, and K. J. Devi,
               IEEE International Conference on Vehicular            “Semantic  classification  and  region  growing
               Electronics and Safety,  Istanbul,  Turkey,           of  MRI  using  CANFIS  model  for  Tumor
               pp. 387-392, July 24-27, 2012.                        identification”, Australian Journal of Basic and
                                                                     Applied Sciences, vol. 8, no. 3, pp. 43-52, 2014.
          [15]   K. Aziz, A. Rahman, A. Y. Shamseldin, and M.
               Shaoib,  “Co-active  Neuro-Fuzzy  System  for   [23]   L. Parthiban, and R. Subramanian, “Intelligent
               regional flood estimation in Australia, Journal       heart disease prediction system using CANFIS
               of Hydrology and  Environment Research,               and Genetic algorithm”, International Journal
               vol. 1, no. 1, pp. 11-20, 2013.                       of  Biological and Life Science,  vol.  3,  no.  3,
                                                                     pp. 157-160, 2007.
          [16]   T. O. Hanafy, A. S. Al-Osaimy, M. M. Al-Harthi,
               and  A.  A.  Aly,  “Identification  of  uncertain   [24]   National Communications Authority, Telecom
               nonlinear  MIMO  spacecraft  systems  using           Statistics,       September          2017.
               Coactive  NeuroFuzzy  Inference  System               https://www.nca.org.gh/industry-data-
               (CANFIS)”,  International Journal of Control,         2/market-share-statistics-2/voice-2/
                                                                                  st
               Automation and Systems,  vol.  3,  no.  2,            [Accessed: 21  June, 2018]
               pp. 25-37, 2014.












                                             © International Telecommunication Union, 2018                    81
   98   99   100   101   102   103   104   105   106   107   108