Page 45 - First special issue on The impact of Artificial Intelligence on communication networks and services
P. 45
,78 -2851$/ ,&7 'LVFRYHULHV 9RO 0DUFK
REAL-TIME MONITORING OF THE GREAT BARRIER REEF USING
INTERNET OF THINGS WITH BIG DATA ANALYTICS
0DULPXWKX 3DODQLVZDPL $UDYLQGD 6 5DR 6FRWW %DLQEULGJH
7KH 8QLYHUVLW\ RI 0HOERXUQH 'HSW RI (OHFWULFDO DQG (OHFWURQLF (QJLQHHULQJ 3DUNYLOOH 9,& $XVWUDOLD
$XVWUDOLDQ ,QVWLWXWH RI 0DULQH 6FLHQFH 30% 7RZQVYLOOH 4/' $XVWUDOLD
Abstract –The Great Barrier Reef (GBR) of Australia is the largest size of coral reef system on the planet stretching
over 2300 kilometers. Coral reefs are experiencing a range of stresses including climate change, which has
resulted in episodes of coral bleaching and ocean acidification where increased levels of carbon dioxide from the
burning of fossil fuels are reducing the calcification mechanism of corals. In this article, we present a successful
application of big data analytics with Internet of Things (IoT)/wireless sensor networks (WSNs) technology to
monitor complex marine environments of the GBR. The paper presents a two-tiered IoT/WSN network
architecture used to monitor the GBR and the role of artificial intelligence (AI) algorithms with big data analytics
to detect events of interest. The case study presents the deployment of a WSN at Heron Island in the southern GBR
in 2009. It is shown that we are able to detect Cyclone Hamish patterns as an anomaly using the sensor time series
of temperature, pressure and humidity data. The article also gives a perspective of AI algorithms from the
viewpoint to monitor, manage and understand complex marine ecosystems. The knowledge obtained from the
large-scale implementation of IoT with big data analytics will continue to act as a feedback mechanism for
managing acomplex system of systems (SoS) in our marine ecosystem.
.H\ZRUGV ± $UWLILFLDO LQWHOOLJHQFH ELJ GDWD DQDO\WLFV FRUDO EOHDFKLQJ ,QWHUQHW RI 7KLQJV ZLUHOHVV VHQVRU
QHWZRUNV UHDO WLPH PRQLWRULQJ HYHQW GHWHFWLRQ
1. INTRODUCTION $QWKURSRJHQLF DFWLYLWLHV DUH DWWULEXWHG WR LQFUHDVHG
VWUHVVHV RQ FRUDO UHHIV DV WKH SURPLQHQW UHDVRQ IRU
7KH *UHDW %DUULHU 5HHI *%5 RI $XVWUDOLD FRQVLVWV FRUDO EOHDFKLQJ (SLVRGHV RI EOHDFKLQJ DW UHJLRQDO
RI FRUDO UHHIV H[WHQGHG RYHU VTXDUH NP VFDOHV KDYH EHHQ RFFXUULQJ IRU PDQ\ GHFDGHV SULRU
> @ 7KH *%5 KDV DERXW LVODQGV FRYHULQJ WR WKH V EXW GXH WR D ODFN RI UHSRUWLQJ
NP WKDW LQFOXGH PDQJURYH IRUHVWV FRDVWDO ZHWODQGV GRFXPHQWDWLRQ DQG XQGHUVWDQGLQJ LW LV GLIILFXOW WR
DQG HVWXDULHV GHHS VKRDOV VHDJUDVV PHDGRZV PHDVXUH WKH H[WHQW RI WKH EOHDFKLQJ HIIHFW SULRU WR WKH
FRQWLQHQWDO VKHOI PDUJLQ DQG VORSH > @ %RWK V > @ ,Q WKH ILUVW WKHUPDO EOHDFKLQJ
HFRQRPLFDOO\ DQG HFRORJLFDOO\ $XVWUDOLD LQFLGHQW ZDV UHSRUWHG DW %LUG .H\ 5HHI LQ WKH )ORULGD
VLJQLILFDQWO\ JDLQV EHQHILWV IURP WKLV JHRJUDSKLFDOO\ .H\V ZKHUH ODUJH QXPEHUV RI FRUDOV ZHUH LQMXUHG
LPSRUWDQW PDULQH HFRV\VWHP +RZHYHU WKH EXUQLQJ GXULQJ DEQRUPDOO\ KRW DQG FDOP ZHDWKHU FRQGLWLRQV
RI IRVVLO IXHOV UHOHDVHV FDUERQ GLR[LGH &2 ZKLFK NLOOLQJ PDQ\ ILVK 'LDGHPD DQG PROOXVFV > @ ,Q
LQ WXUQ LV DEVRUEHG E\ RFHDQV UHVXOWLQJ LQ D VLPLODU EOHDFKLQJ LQFLGHQW ZDV UHSRUWHG DW
DFLGLILFDWLRQ 7KLV SURFHVV LQKLELWV FRUDOV IURP /RZ ,VOHV RQ WKH *%5 NLOOLQJ PDQ\ FRUDOV > @ 7KH
VHFUHWLQJ FDOFLXP FDUERQDWH H[RVNHOHWRQV > @ UHSRUWV RI EOHDFKLQJ LQFLGHQWV KDYH JURZQ
UHGXFLQJ FDOFLILFDWLRQ WKH UHHI EXLOGLQJ PHFKDQLVP VLJQLILFDQWO\ VLQFH DQG WKLV KDV EHHQ OLQNHG WR
DQG DVVRFLDWHG RUJDQLVPV 5LVH LQ JOREDO WHPSHUDWXUH FOLPDWH FKDQJH > @
LV DOVR SXWWLQJ PRUH VWUHVV RQ WKH PDULQH VSHFLHV 7KH $XVWUDOLDQ ,QVWLWXWH RI 0DULQH 6FLHQFH $,06
&RUDO EOHDFKLQJ LV WKH SURFHVV ZKHUH WKH UHODWLRQVKLS FROOHFWV HQYLURQPHQWDO GDWD WR DQDO\]H DQG DGGUHVV
EHWZHHQ WKH FRUDO DQG LWV V\PELRWLF DOJDH EUHDNV WKHVH FKDOOHQJLQJ TXHVWLRQV ,W LV XQGHUVWRRG WKDW WKH
GRZQ GXULQJ UDSLG FKDQJHV LQ VHD ZDWHU WHPSHUDWXUH FDWDVWURSKLF WKHUPDO VWUHVV PLJKW VHULRXVO\ LPSDFW
KRW RU FROG PDNLQJ FRUDOV YXOQHUDEOH > @ WKH *%5 RYHU WKH QH[W FHQWXU\ > @ $V D UHVXOW LW LV
LPSHUDWLYH WKDW ZH XQGHUVWDQG WKH WHPSHUDWXUH
,QWHUQDWLRQDO 7HOHFRPPXQLFDWLRQ 8QLRQ