Page 42 - First special issue on The impact of Artificial Intelligence on communication networks and services
P. 42

,78 -2851$/  ,&7 'LVFRYHULHV  9RO        0DUFK





         [56] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eye-  [66] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong,
             riss: An energy-efficient reconfigurable accelerator for  “Optimizing fpga-based accelerator design for deep
             deep convolutional neural networks,” IEEE Journal of  convolutional neural networks,” in Proceedings of the
             Solid-State Circuits, vol. 52, no. 1, pp. 127–138, 2017.  2015 ACM/SIGDA International Symposium on Field-
                                                                Programmable Gate Arrays.  ACM, 2015, pp. 161–
         [57] B. Moons, R. Uytterhoeven, W. Dehaene, and M. Ver-  170.
             helst, “Envision:  A 0.26-to-10 tops/w subword-
             parallel dynamic-voltage-accuracy-frequency-scalable  [67] N. Suda, V. Chandra, G. Dasika, A. Mohanty, Y. Ma,
             convolutional neural network processor in 28nm fdsoi,”  S. Vrudhula, J.-s. Seo, and Y. Cao, “Throughput-
             in IEEE International Solid-State Circuits Conference  optimized OpenCL-based FPGA accelerator for large-
             (ISSCC), 2017, pp. 246–257.                        scale convolutional neural networks,” in Proceedings
                                                                of the 2016 ACM/SIGDA International Symposium on
         [58] N. P. Jouppi, C. Young, N. Patil, D. Patterson,
                                                                Field-Programmable Gate Arrays.  ACM, 2016, pp.
             G. Agrawal, R. Bajwa, S. Bates, S. Bhatia, N. Bo-
                                                                16–25.
             den, A. Borchers et al., “In-datacenter performance
             analysis of a tensor processing unit,” arXiv preprint  [68] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang,
             arXiv:1704.04760, 2017.                            L. Li, T. Chen, Z. Xu, N. Sun et al., “Dadiannao:
                                                                A machine-learning supercomputer,” in Proceedings of
         [59] J. Jeddeloh and B. Keeth, “Hybrid memory cube new  the 47th Annual IEEE/ACM International Symposium
             dram architecture increases density and performance,”
                                                                on Microarchitecture. IEEE Computer Society, 2014,
             in VLSI Technology (VLSIT), 2012 Symposium on.     pp. 609–622.
             IEEE, 2012, pp. 87–88.
                                                            [69] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo,
         [60] M. Gao, J. Pu, X. Yang, M. Horowitz, and
                                                                X. Feng, Y. Chen, and O. Temam, “Shidiannao: Shift-
             C. Kozyrakis, “Tetris: Scalable and efficient neural net-
                                                                ing vision processing closer to the sensor,” in ACM
             work acceleration with 3d memory,” in Proceedings of
                                                                SIGARCH Computer Architecture News, vol. 43, no. 3.
             the Twenty-Second International Conference on Archi-
                                                                ACM, 2015, pp. 92–104.
             tectural Support for Programming Languages and Op-
             erating Systems. ACM, 2017, pp. 751–764.
                                                            [70] D. Liu, T. Chen, S. Liu, J. Zhou, S. Zhou, O. Teman,
         [61] D. Kim, J. Kung, S. Chai, S. Yalamanchili, and    X. Feng, X. Zhou, and Y. Chen, “Pudiannao: A polyva-
             S. Mukhopadhyay, “Neurocube:  A programmable       lent machine learning accelerator,” in ACM SIGARCH
                                                                Computer Architecture News, vol. 43, no. 1.  ACM,
             digital neuromorphic architecture with high-density
                                                                2015, pp. 369–381.
             3d memory,” in Computer Architecture (ISCA), 2016
             ACM/IEEE 43rd Annual International Symposium on.
                                                            [71] S. Han, H. Mao, and W. J. Dally, “Deep compres-
             IEEE, 2016, pp. 380–392.
                                                                sion: Compressing deep neural networks with prun-
         [62] L. Chua, “Memristor-the missing circuit element,”  ing, trained quantization and huffman coding,” arXiv
             IEEE Transactions on circuit theory, vol. 18, no. 5, pp.  preprint arXiv:1510.00149, 2015.
             507–519, 1971.
                                                            [72] A. Lavin and S. Gray, “Fast algorithms for convolu-
         [63] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasub-  tional neural networks,” in Proceedings of the IEEE
             ramonian, J. P. Strachan, M. Hu, R. S. Williams, and  Conference on Computer Vision and Pattern Recogni-
             V. Srikumar, “Isaac: A convolutional neural network  tion, 2016, pp. 4013–4021.
             accelerator with in-situ analog arithmetic in crossbars,”
             in Proceedings of the 43rd International Symposium on  [73] M. Mathieu, M. Henaff, and Y. LeCun, “Fast training
             Computer Architecture. IEEE Press, 2016, pp. 14–26.  of convolutional networks through ffts,” arXiv preprint
                                                                arXiv:1312.5851, 2013.
         [64] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang,
             and Y. Xie, “Prime: A novel processing-in-memory  [74] J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu,
             architecture for neural network computation in reram-  T. Tang, N. Xu, S. Song et al., “Going deeper with
             based main memory,” in Proceedings of the 43rd Inter-  embedded fpga platform for convolutional neural net-
             national Symposium on Computer Architecture. IEEE  work,” in Proceedings of the 2016 ACM/SIGDA Inter-
             Press, 2016, pp. 27–39.                            national Symposium on Field-Programmable Gate Ar-
                                                                rays.  ACM, 2016, pp. 26–35.
         [65] S. Chakradhar, M. Sankaradas, V. Jakkula, and
             S. Cadambi, “A dynamically configurable coprocessor  [75] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed,
             for convolutional neural networks,” in ACM SIGARCH  C.-Y. Fu, and A. C. Berg, “Ssd: Single shot multibox
             Computer Architecture News, vol. 38, no. 3.  ACM,  detector,” in European conference on computer vision.
             2010, pp. 247–257.                                 Springer, 2016, pp. 21–37.




                                           ‹ ,QWHUQDWLRQDO 7HOHFRPPXQLFDWLRQ 8QLRQ
   37   38   39   40   41   42   43   44   45   46   47