Page 43 - First special issue on The impact of Artificial Intelligence on communication networks and services
P. 43
,78 -2851$/ ,&7 'LVFRYHULHV 9RO 0DUFK
[76] L. Huang, Y. Yang, Y. Deng, and Y. Yu, “Densebox: [89] L. Song, X. Qian, H. Li, and Y. Chen, “Pipelayer: A
Unifying landmark localization with end to end object pipelined reram-based accelerator for deep learning,”
detection,” arXiv preprint arXiv:1509.04874, 2015. in High Performance Computer Architecture (HPCA),
2017 IEEE International Symposium on. IEEE, 2017,
[77] J. Schmidhuber and S. Hochreiter, “Long short-term
pp. 541–552.
memory,” Neural computation, vol. 9, no. 8, pp. 1735–
1780, 1997.
[78] S. Han, J. Kang, H. Mao, Y. Hu, X. Li, Y. Li, D. Xie,
H. Luo, S. Yao, Y. Wang et al., “ESE: Efficient speech
recognition engine with sparse LSTM on FPGA.” in
FPGA, 2017, pp. 75–84.
[79] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and
Y. Bengio, “Binarized neural networks,” in Advances
in neural information processing systems, 2016, pp.
4107–4115.
[80] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi,
“Xnor-net: Imagenet classification using binary convo-
lutional neural networks,” in European Conference on
Computer Vision. Springer, 2016, pp. 525–542.
[81] F. Li, B. Zhang, and B. Liu, “Ternary weight networks,”
arXiv preprint arXiv:1605.04711, 2016.
[82] C. Zhu, S. Han, H. Mao, and W. J. Dally,
“Trained ternary quantization,” arXiv preprint
arXiv:1612.01064, 2016.
[83] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen,
“Incremental network quantization: Towards loss-
less cnns with low-precision weights,” arXiv preprint
arXiv:1702.03044, 2017.
[84] V. Sze, T.-J. Yang, and Y.-H. Chen, “Designing energy-
efficient convolutional neural networks using energy-
aware pruning,” 2017.
[85] M. Alwani, H. Chen, M. Ferdman, and P. Milder,
“Fused-layer cnn accelerators,” in Microarchitecture
(MICRO), 2016 49th Annual IEEE/ACM International
Symposium on. IEEE, 2016, pp. 1–12.
[86] F. Tu, S. Yin, P. Ouyang, S. Tang, L. Liu, and S. Wei,
“Deep convolutional neural network architecture with
reconfigurable computation patterns,” IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems,
2017.
[87] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li,
Q. Guo, T. Chen, and Y. Chen, “Cambricon-x: An ac-
celerator for sparse neural networks,” in Microarchitec-
ture (MICRO), 2016 49th Annual IEEE/ACM Interna-
tional Symposium on. IEEE, 2016, pp. 1–12.
[88] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli,
R. Venkatesan, B. Khailany, J. Emer, S. W. Keckler, and
W. J. Dally, “SCNN: An accelerator for compressed-
sparse convolutional neural networks,” in Proceedings
of the 44th Annual International Symposium on Com-
puter Architecture. ACM, 2017, pp. 27–40.
,QWHUQDWLRQDO 7HOHFRPPXQLFDWLRQ 8QLRQ