Page 195 - AI for Good Innovate for Impact
P. 195

AI for Good Innovate for Impact



               •    REQ-04: It's recommended to use satellite data and radar image data to enhance
                    forecasting performance.
               •    REQ-05: It's required to use GPU for model training, which is highly recommended for
                    daily online inference.
               •    REQ-06: It's recommended to use cloud-based data transmission for deployment.                  Change  4.2-Climate


               4      Sequence Diagram



























               5      References
               [1]  C. Liu, “Alibaba’s New AI Model Enhances Weather Forecasting Precision Amid Rising
                    Climate Threats,” Alizila, Nov. 06, 2024. https:// www .alizila .com/ alibaba -damo -academy
                    -ai -model -weather -forecasting (accessed Jun. 09, 2025).
               [2]  P. Niu et al., “Utilizing Strategic Pre-training to Reduce Overfitting: Baguan -- A Pre-
                    trained Weather Forecasting Model,” arXiv.org, 2025. https:// arxiv .org/ abs/ 2505 .13873
                    (accessed Jun. 09, 2025).
               [3]  Y. Guo, T. Zhou, W. Jiang, B. Wu, L. Sun, and R. Jin, “Maximizing the Impact of Deep
                    Learning on Subseasonal-to-Seasonal Climate Forecasting: The Essential Role of
                    Optimization,” arXiv.org, 2024. https:// arxiv .org/ abs/ 2411 .16728 (accessed Jun. 09,
                    2025).
               [4]  S. Zhang, “5 Ways Alibaba is Leading Sustainability Efforts Demonstrated at COP29,”
                    Alizila, Nov. 18, 2024. https:// www .alizila .com/ 5 -ways -alibaba -is -leading -sustainability
                    -efforts -demonstrated -at -cop29/
               [5]  “MindOpt_Decision Intelligence – Alibaba Cloud,” Aliyun.com, 2025. https:// opt .aliyun
                    .com/ weather (accessed Jun. 09, 2025).























                                                                                                    159
   190   191   192   193   194   195   196   197   198   199   200