Page 65 - Kaleidoscope Academic Conference Proceedings 2024
P. 65

Innovation and Digital Transformation for a Sustainable World












           Figure 8 – Coincidence counts versus time representing the
           Hong-Ou-Mandel dip.

            [2] P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph,
               J. P. Dowling, and G. J. Milburn, “Linear optical
               quantum computing with photonic qubits” Rev.Mod.
               Phys., vol. 79 no. 1, pp. 135-174, 2007.

            [3] J. P. Dowling, “Quantum optical metrology – the
               lowdown on high-n00n states” Contemp. Phys., vol. 49
               no. 2, pp. 125-143, 2008.
            [4] D. M. Greenberger, M. A. Horne, and A. Zeilinger,
               “Multiparticle interferometry and the superposition
               principle” Phys. Today, vol. 46, pp. 22-29, 1993.

            [5] K. O. Kim, Heonoh and H. S. Moon, “Two-photon
               interferences of weak coherent lights” Sci. Rep, vol. 11,
               2021.
            [6] C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of
               subpicosecond time intervals between two photons by
               interference” Phys. Rev. Lett., vol. 59, pp. 2044–2046,
               1987.
            [7] F. Bouchard, A. Sit, Y. Zhang, R. Fickler, F. M. Miatto,
               Y. Yao, F. Sciarrino, and E. Karimi, “Two-photon
               interference: the hong–ou–mandel effect” Rep. Prog.
               Phys., vol. 84, pp. 012402, 2020.
            [8] D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl,
               H. Weinfurter, and A. Zeilinger, “Experimental
               quantum teleportation” Nature, vol. 390, pp. 575–579,
               1997.
            [9] V. Giovannetti, S. Lloyd, L. Maccone, and F. N.
               C. Wong, “Clock synchronization with dispersion
               cancellation” Phys. Rev. Lett., vol. 87, pp. 117902, 2001.

           [10] H.-K.  Lo,    M.    Curty,   and   B.    Qi,
               “Measurement-device-independent  quantum  key
               distribution” Phys. Rev. Lett., vol. 108, pp. 130503,
               2012.
























                                                           – 21 –
   60   61   62   63   64   65   66   67   68   69   70