Page 308 - Kaleidoscope Academic Conference Proceedings 2024
P. 308
2024 ITU Kaleidoscope Academic Conference
[22] H. Bechmann-Pasquinucci and N. Gisin, “Incoherent [33] M. Pereira, G. Currás-Lorenzo, Á. Navarrete, A.
and coherent eavesdropping in the six-state protocol of Mizutani, G. Kato, M. Curty, and K. Tamaki,
quantum cryptography,” Phys. Rev. A, Gen. Phys., vol. “Modified BB84 quantum key distribution protocol
59, no. 6, pp. 4238–4248, Jun. 1999. robust to source imperfections,” Phys. Rev. Res., vol.
5, no. 2, p. 023065, Apr. 2023, doi: 10.1103/
[23] Y. Tian, J. Li, X.-B. Chen, C.-Q. Ye, and H.-J. Li, PhysRevResearch.5.023065.
“An efficient semiquantum secret sharing protocol of
specific bits,” Quantum Inf. Process., vol. 20, no. 6, pp. [34] M. Zahidy, D. Ribezzo, C. De Lazzari, et al.,
1–11, Jun. 2021. “Practical high-dimensional quantum key distribution
protocol over deployed multicore fiber,” Nature
[24] A. S. Avanesov, D. A. Kronberg, and A. N. Pechen, Communications, vol. 15, p. 1651, 2024, doi: https:
“Active beam splitting attack applied to differential //doi.org/10.1038/s41467-024-45876-x4.
phase shift quantum key distribution protocol,” P-Adic
[35] “Aqus - Analog Quantum Simulators for Many-Body
Numbers, Ultrametric Anal. Appl., vol. 10, no. 3, pp.
Dynamics,” [Online]. Available: https://cordis.
222–232, Jul. 2018.
europa.eu/project/id/640800
[25] V. Scarani, A. Acín, G. Ribordy, and N. Gisin,
[36] “Qcall - Quantum Communications for All,” [Online].
“Quantum cryptography protocols robust against
Available: https://cordis.europa.eu/project/
photon number splitting attacks for weak laser pulse
id/675662
implementations,” Phys. Rev. Lett., vol. 92, no. 5, p. 4,
Feb. 2004. [37] “Quantcom - Ubiquitous Quantum Communications,”
[Online]. Available: https://cordis.europa.eu/
[26] N. Gisin, G. Ribordy, H. Zbinden, D. Stucki, N. Brunner, project/id/789028
and V. Scarani, “Towards practical and fast quantum
cryptography,” 2004, arXiv:quant-ph/0411022. [38] “Qcumber - Quantum Controlled Ultrafast Multimode
Entanglement and Measurement,” [Online]. Available:
[27] M. M. Khan, M. Murphy, and A. Beige, “High https://cordis.europa.eu/project/id/
error-rate quantum key distribution for long-distance 665148
communication,” New J. Phys., vol. 11, no. 6, Jun. 2009,
[39] “Nanoqtech - Nanoscale Systems for Optical Quantum
Art. no. 063043.
Technologies,” [Online]. Available: https://
cordis.europa.eu/project/id/712721
[28] D. B. S. Soh, C. Brif, P. J. Coles, N. Lütkenhaus,
R. M. Camacho, J. Urayama, and M. Sarovar, [40] “Civiq - Continuous Variable Quantum
“Self-Referenced Continuous-Variable Quantum Key Communications,” [Online]. Available: https:
Distribution Protocol,” Phys. Rev. X, vol. 5, no. 4, //cordis.europa.eu/project/id/820466
p. 041010, Oct. 2015, doi: 10.1103/PhysRevX.5.
041010. [41] “Center for a Quantum-Engineered Distributed
Computing and Communication Testbed,”
[29] M. Lucamarini, Z. L. Yuan, J. F. Dynes, et al., [Online]. Available: https://www.nsf.gov/
“Overcoming the rate–distance limit of quantum key awardsearch/showAward?AWD_ID=1936948&
distribution without quantum repeaters,” Nature, vol. HistoricalAwards=false
557, pp. 400–403, 2018, doi: https://doi.org/10.
[42] “Center for Interdisciplinary Research in
1038/s41586-018-0066-6.
Quantum Information Theory and Simulation,”
[30] A. Dahlberg, “A link layer protocol for quantum [Online]. Available: https://www.nsf.gov/
networks,” in Proc. 2019 Conf. ACM Spec. Interes. Gr. awardsearch/showAward?AWD_ID=1936726&
Data Commun., 2019, pp. 159–173. HistoricalAwards=false
[43] “Openqkd - Open European Quantum Key Distribution
[31] P. S. Goswami, T. Chakraborty, and A. Chattopadhyay,
Testbed,” [Online]. Available: https://cordis.
“Knapsack encoding for secured quantum key
europa.eu/project/id/857156
distribution protocol,” Modern Physics Letters A, vol.
35, no. 36, p. 2050295, 2020, doi: 10.1142/ [44] “NSF Engineering Research Center for Quantum
S0217732320502958. Networks,” [Online]. Available: https:
//www.nsf.gov/awardsearch/showAward?AWD_
[32] Q. Zhang, H. Lai, and J. Pieprzyk,
ID=1941583&HistoricalAwards=false
“Quantum-key-expansion protocol based on
number-state-entanglement-preserving tensor [45] C. Wang and A. Rahman, “Quantum-enabled 6G
network with compression,” Phys. Rev. A, wireless networks: opportunities and challenges,” IEEE
vol. 105, no. 3, p. 032439, Mar. 2022, doi: Wireless Commun., vol. 29, no. 1, pp. 58–69, 2022, doi:
10.1103/PhysRevA.105.032439. https://doi.org/10.1109/mwc.006.00340.
– 264 –