Page 308 - Kaleidoscope Academic Conference Proceedings 2024
P. 308

2024 ITU Kaleidoscope Academic Conference




           [22] H. Bechmann-Pasquinucci and N. Gisin, “Incoherent  [33] M. Pereira, G. Currás-Lorenzo, Á. Navarrete, A.
               and coherent eavesdropping in the six-state protocol of  Mizutani, G. Kato, M. Curty, and K. Tamaki,
               quantum cryptography,” Phys. Rev. A, Gen. Phys., vol.  “Modified BB84 quantum key distribution protocol
               59, no. 6, pp. 4238–4248, Jun. 1999.               robust to source imperfections,” Phys. Rev. Res., vol.
                                                                  5, no. 2, p. 023065, Apr. 2023, doi:  10.1103/
           [23] Y. Tian, J. Li, X.-B. Chen, C.-Q. Ye, and H.-J. Li,  PhysRevResearch.5.023065.
               “An efficient semiquantum secret sharing protocol of
               specific bits,” Quantum Inf. Process., vol. 20, no. 6, pp.  [34] M. Zahidy, D. Ribezzo, C. De Lazzari, et al.,
               1–11, Jun. 2021.                                   “Practical high-dimensional quantum key distribution
                                                                  protocol over deployed multicore fiber,” Nature
           [24] A. S. Avanesov, D. A. Kronberg, and A. N. Pechen,  Communications, vol. 15, p. 1651, 2024, doi: https:
               “Active beam splitting attack applied to differential  //doi.org/10.1038/s41467-024-45876-x4.
               phase shift quantum key distribution protocol,” P-Adic
                                                              [35] “Aqus - Analog Quantum Simulators for Many-Body
               Numbers, Ultrametric Anal. Appl., vol. 10, no. 3, pp.
                                                                  Dynamics,” [Online]. Available: https://cordis.
               222–232, Jul. 2018.
                                                                  europa.eu/project/id/640800
           [25] V. Scarani, A. Acín, G. Ribordy, and N. Gisin,
                                                              [36] “Qcall - Quantum Communications for All,” [Online].
               “Quantum cryptography protocols robust against
                                                                  Available: https://cordis.europa.eu/project/
               photon number splitting attacks for weak laser pulse
                                                                  id/675662
               implementations,” Phys. Rev. Lett., vol. 92, no. 5, p. 4,
               Feb. 2004.                                     [37] “Quantcom - Ubiquitous Quantum Communications,”
                                                                  [Online]. Available: https://cordis.europa.eu/
           [26] N. Gisin, G. Ribordy, H. Zbinden, D. Stucki, N. Brunner,  project/id/789028
               and V. Scarani, “Towards practical and fast quantum
               cryptography,” 2004, arXiv:quant-ph/0411022.   [38] “Qcumber - Quantum Controlled Ultrafast Multimode
                                                                  Entanglement and Measurement,” [Online]. Available:
           [27] M. M. Khan, M. Murphy, and A. Beige, “High        https://cordis.europa.eu/project/id/
               error-rate quantum key distribution for long-distance  665148
               communication,” New J. Phys., vol. 11, no. 6, Jun. 2009,
                                                              [39] “Nanoqtech - Nanoscale Systems for Optical Quantum
               Art. no. 063043.
                                                                  Technologies,”  [Online].  Available:  https://
                                                                  cordis.europa.eu/project/id/712721
           [28] D. B. S. Soh, C. Brif, P. J. Coles, N. Lütkenhaus,
               R. M. Camacho, J. Urayama, and M. Sarovar,     [40] “Civiq  -    Continuous  Variable   Quantum
               “Self-Referenced Continuous-Variable Quantum Key   Communications,”  [Online]. Available:  https:
               Distribution Protocol,” Phys. Rev. X, vol. 5, no. 4,  //cordis.europa.eu/project/id/820466
               p. 041010, Oct. 2015, doi: 10.1103/PhysRevX.5.
               041010.                                        [41] “Center  for  a  Quantum-Engineered  Distributed
                                                                  Computing    and    Communication    Testbed,”
           [29] M. Lucamarini, Z. L. Yuan, J. F. Dynes, et al.,   [Online].  Available:  https://www.nsf.gov/
               “Overcoming the rate–distance limit of quantum key  awardsearch/showAward?AWD_ID=1936948&
               distribution without quantum repeaters,” Nature, vol.  HistoricalAwards=false
               557, pp. 400–403, 2018, doi: https://doi.org/10.
                                                              [42] “Center  for  Interdisciplinary  Research  in
               1038/s41586-018-0066-6.
                                                                  Quantum   Information  Theory  and  Simulation,”
           [30] A. Dahlberg, “A link layer protocol for quantum   [Online].  Available:  https://www.nsf.gov/
               networks,” in Proc. 2019 Conf. ACM Spec. Interes. Gr.  awardsearch/showAward?AWD_ID=1936726&
               Data Commun., 2019, pp. 159–173.                   HistoricalAwards=false

                                                              [43] “Openqkd - Open European Quantum Key Distribution
           [31] P. S. Goswami, T. Chakraborty, and A. Chattopadhyay,
                                                                  Testbed,” [Online]. Available:  https://cordis.
               “Knapsack encoding for secured quantum key
                                                                  europa.eu/project/id/857156
               distribution protocol,” Modern Physics Letters A, vol.
               35, no. 36, p. 2050295, 2020, doi:  10.1142/   [44] “NSF Engineering Research Center for Quantum
               S0217732320502958.                                 Networks,”   [Online].  Available:    https:
                                                                  //www.nsf.gov/awardsearch/showAward?AWD_
           [32] Q.  Zhang,   H.   Lai,   and   J.   Pieprzyk,
                                                                  ID=1941583&HistoricalAwards=false
               “Quantum-key-expansion  protocol  based   on
               number-state-entanglement-preserving   tensor  [45] C. Wang and A. Rahman, “Quantum-enabled 6G
               network  with  compression,”  Phys.  Rev.  A,      wireless networks: opportunities and challenges,” IEEE
               vol. 105, no. 3, p. 032439, Mar. 2022, doi:        Wireless Commun., vol. 29, no. 1, pp. 58–69, 2022, doi:
               10.1103/PhysRevA.105.032439.                       https://doi.org/10.1109/mwc.006.00340.




                                                          – 264 –
   303   304   305   306   307   308   309   310   311   312   313