Page 201 - Kaleidoscope Academic Conference Proceedings 2024
P. 201

Innovation and Digital Transformation for a Sustainable World




               model pretraining for biomedical natural language
               processing.  ACM Transactions on Computing for
               Healthcare (HEALTH), 3(1):1–23, 2021.

            [9] Iz Beltagy, Kyle Lo, and Arman Cohan. Scibert: A
               pretrained language model for scientific text. arXiv
               preprint arXiv:1903.10676, 2019.
           [10] Bofeng Zhang, Xiuhong Yao, Haiyan Li, and Mirensha
               Aini. Chinese medical named entity recognition based
               on expert knowledge and fine-tuning bert. In 2023 IEEE
               International Conference on Knowledge Graph (ICKG),
               pages 84–90, 2023.

           [11] Ning Liu, Qian Hu, Huayun Xu, Xing Xu, and Mengxin
               Chen. Med-bert: A pretraining framework for medical
               records named entity recognition. IEEE Transactions
               on Industrial Informatics, 18(8):5600–5608, 2022.

           [12] Rajesh Kumar, Abdullah Aman Khan, Jay Kumar,
               Noorbakhsh Amiri Golilarz, Simin Zhang, Yang
               Ting, Chengyu Zheng, Wenyong Wang, et al.
               Blockchain-federated-learning  and  deep  learning
               models for covid-19 detection using ct imaging. IEEE
               Sensors Journal, 21(14):16301–16314, 2021.

           [13] Yiqiang Chen, Xin Qin, Jindong Wang, Chaohui Yu,
               and Wen Gao. Fedhealth: A federated transfer learning
               framework for wearable healthcare. IEEE Intelligent
               Systems, 35(4):83–93, 2020.

           [14] Dianbo Sui, Yubo Chen, Jun Zhao, Yantao Jia, Yuantao
               Xie, and Weijian Sun. Feded: Federated learning via
               ensemble distillation for medical relation extraction.
               In Proceedings of the 2020 conference on empirical
               methods in natural language processing (EMNLP),
               pages 2118–2128, 2020.

           [15] Ittai Dayan, Holger R Roth, Aoxiao Zhong, Ahmed
               Harouni, Amilcare Gentili, Anas Z Abidin, Andrew
               Liu, Anthony Beardsworth Costa, Bradford J Wood,
               Chien-Sung Tsai, et al. Federated learning for predicting
               clinical outcomes in patients with covid-19. Nature
               medicine, 27(10):1735–1743, 2021.

           [16] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du,
               Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
               Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A
               robustly optimized bert pretraining approach. arXiv
               preprint arXiv:1907.11692, 2019.




















                                                          – 157 –
   196   197   198   199   200   201   202   203   204   205   206