Page 166 - Kaleidoscope Academic Conference Proceedings 2024
P. 166
2024 ITU Kaleidoscope Academic Conference
[28] Zhao, P., Zhang, H., Yu, Q., Wang, Z., Geng, Y., Applications. Engineering, 25, 51–65.
Fu, F., Yang, L., Zhang, W., Jiang, J., & Cui, B. https://doi.org/10.1016/j.eng.2022.04.024
(2024). Retrieval-Augmented Generation for AI-
Generated Content: A Survey. arXiv. [38] Gururangan, S., Marasović, A., Swayamdipta, S.,
https://doi.org/10.48550/arXiv.2402.19473 Lo, K., Beltagy, I., Downey, D., & Smith, N. A.
(2020). Don't stop pretraining: Adapt language
[29] Shahab, O., El Kurdi, B., Shaukat, A., Nadkarni, models to domains and tasks. arXiv.
G., & Soroush, A. (2024). Large language models: https://doi.org/10.48550/arXiv.2004.10964
a primer and gastroenterology applications.
Therapeutic Advances in Gastroenterology, 17, [39] Morande, S., & Tewari, V. (2023). Causality in
17562848241227032. Machine Learning: Innovating Model
https://doi.org/10.1177/17562848241227031 Generalization through Inference of Causal
Relationships from Observational Data. Qeios.
[30] Peng, C., He, S., Xu, Y., Li, L., Du, N., Chen, L., https://doi.org/10.32388/P7MMGR
Zhang, Y., Li, F., Xie, Y., Sun, X., & Xie, P.
(2023). A study of generative large language [40] Abbasian, M., Abedian, S., Agrawal, P.,
model for medical research and healthcare. npj Alqahtani, S., Alshammari, N., Alsheikh, N.,
Digital Medicine, 6(1). Anand, S., Athey, K., Balasubramanian, R., Balki,
https://doi.org/10.1038/s41746-023-00958-w I., Blei, D., Browne, O., Buhr, E., Chen, I. Y.,
Chen, P.-H. C., Chowdhury, R., Corey, K. E.,
[31] Sai, S., Gaur, A., Sai, R., Chamola, V., Guizani, Dalke, A. R., Dubasov, C., … Zou, J. (2024).
M., & Rodrigues, J. J. P. C. (2024). Generative AI Foundation metrics for evaluating effectiveness of
for Transformative Healthcare: A Comprehensive healthcare conversations powered by generative
Study of Emerging Models, Applications, Case AI. NPJ Digital Medicine, 7(1), 82.
Studies and Limitations. IEEE Access. https://doi.org/10.1038/s41746-024-01074-z
https://doi.org/10.1109/ACCESS.2024.3365979
[41] Krishna, K., Ramprasad, S., Gupta, P., Wallace, B.
[32] Nassiri, K., & Akhloufi, M. A. (2024). Recent C., Lipton, Z. C., & Bigham, J. P. (2024).
Advances in Large Language Models for GenAudit: Fixing Factual Errors in Language
Healthcare. BioMedInformatics, 4(2), 1097–1143. Model Outputs with Evidence. arXiv.
https://doi.org/10.3390/biomedinformatics402006 https://doi.org/10.48550/arXiv.2402.12566
8
[42] Anwar, U., Saparov, A., Rando, J., Paleka, D.,
[33] Gao, L., Biderman, S., Black, S., Golding, L., Turpin, M., Hase, P., Lubana, E. S., Jenner, E.,
Hoppe, T., Foster, C., Phang, J., He, H., Thite, A., Casper, S., Sourbut, O., Edelman, B. L., Zhang, Z.,
Nabeshima, N., Presser, S., & Leahy, C. (2020). Günther, M., Korinek, A., Hernandez-Orallo, J.,
The Pile: An 800GB dataset of diverse text for Hammond, L., Bigelow, E., Pan, A., Langosco, L.,
language modeling. arXiv. ... Krueger, D. (2024). Foundational Challenges in
https://doi.org/10.48550/arXiv.2101.00027 Assuring Alignment and Safety of Large Language
Models. arXiv.
[34] Miller, N., Tyler, R. J., & Backus, J. E. B. (2004). https://doi.org/10.48550/arXiv.2404.09932
MedlinePlus®: the National Library of Medicine®
brings quality information to health consumers. [43] Díaz-Rodríguez, N., Del Ser, J., Coeckelbergh, M.,
Library Trends, 53(2), 375-388. López de Prado, M., Herrera-Viedma, E., &
Herrera, F. (2023). Connecting the dots in
[35] Pezzella, P. (2022). The ICD‐11 is now officially trustworthy Artificial Intelligence: From AI
in effect. World Psychiatry, 21(2), 331. principles, ethics, and key requirements to
https://doi.org/10.1002/wps.20997 responsible AI systems and regulation.
Information Fusion, 99, 101896.
[36] Han, X., Zhang, Z., Ding, N., Gu, Y., Liu, X., https://doi.org/10.1016/j.inffus.2023.101896
Huo, Y., Qiu, J., Yao, Y., Zhang, A., Zhang, L.,
Han, W., Huang, M., Jin, Q., Lan, Y., Liu, Y., Liu, [44] Khalid, N., Qayyum, A., Bilal, M., Al-Fuqaha, A.,
Z., Lu, Z., Qiu, X., Song, R., … Zhu, J. (2021). & Qadir, J. (2023). Privacy-preserving artificial
Pre-trained models: Past, present and future. AI intelligence in healthcare: Techniques and
Open, 2, 225–250. applications. Computers in Biology and Medicine,
https://doi.org/10.1016/j.aiopen.2021.08.002 158, 106848.
https://doi.org/10.1016/j.compbiomed.2023.10684
[37] Wang, H., Li, J., Wu, H., Hovy, E., & Sun, Y. 8
(2023). Pre-Trained Language Models and Their
– 122 –