Page 72 - AI for Good-Innovate for Impact
P. 72

AI for Good-Innovate for Impact



                      [10]. Physical 3D Adversarial Attacks against Monocular Depth Estimation in Autonomous
                      Driving. Available online:https:// ui .adsabs .harvard .edu/ abs/ 2024arXiv240317301Z/ abstract

                      [11]. Adversarial Objectness Gradient Attacks in Real-time Object Detection Systems. Available
                      online: ieeexplore .ieee .org/ document/ 9325397

                      [12]. Defense Against Adversarial Attacks Using High-Level Representation Guided Denoiser.
                      Available online:ieeexplore .ieee .org/ document/ 8578289

                      [13]. Benchmarks: Semantic Segmentation Neural Network Verification and Objection Detection
                      Neural Network Verification in Perceptions Tasks of Autonomous Driving. Available online: link
                      .springer .com/ chapter/ 10 .1007/ 978 -3 -031 -46002 -9 _16

                      [14]. Intelligent driving intelligence test for autonomous vehicles with naturalistic and adversarial
                      environment. Available online:doi .org/ 10 .1038/ s41467 -021 -21007 -8

                      [15]. FedCORE: Federated Learning for Cross-Organization Recommendation Ecosystem.
                      Available online:ieeexplore .ieee .org/ document/ 10443503

                      [16]. Hierarchical Trajectory Planning for Narrow-Space Automated Parking with Deep
                      Reinforcement Learning: A Federated Learning Scheme. Available online:mdpi .com/ 1424
                      -8220/ 23/ 8/ 4087

                      [17]. Adversarial Safety-Critical Scenario Generation using Naturalistic Human Driving Priors.
                      Available online:ieeexplore .ieee .org/ document/ 10328462

















































                  56
   67   68   69   70   71   72   73   74   75   76   77