Page 71 - AI for Good-Innovate for Impact
P. 71

AI for Good-Innovate for Impact



               13�4� Sequence diagram                                                                               13-Changan




































               13�5� References


               [1]. CAMOU: Learning Physical Vehicle Camouflages to Adversarially Attack Detectors in the
               Wild. Available online:https:// dblp .org/ rec/ conf/ iclr/ ZhangFDG19 .html

               [2]. Dual Attention Suppression Attack: Generate Adversarial Camouflage in Physical World.
               Available online:https:// ieeexplore .ieee .org/ document/ 9577412/

               [3]. FCA: Learning a 3D Full-Coverage Vehicle Camouflage for Multi-View Physical Adversarial
               Attack. Available online:https:// ojs .aaai .org/ index .php/ AAAI/ article/ view/ 20141

               [4]. Towards highly transferable 3d physical camouflage for universal and robust vehicle evasion.
               Available online:https:// dblp .org/ rec/ journals/ corr/ abs -2308 -07009 .html
               [5]. Adversarial Patch Attacks on Monocular Depth Estimation Networks

               Available online:https:// ieeexplore .ieee .org/ document/ 9207958

               [6]. APARATE: Adaptive Adversarial Patch for CNN-based Monocular Depth Estimation for
               Autonomous Navigation� Available online:https:// dblp .org/ rec/ journals/ corr/ abs -2303 -01351
               .html

               [7]. Saam: Stealthy adversarial attack on monocular depth estimation. Available online: https://
               ieeexplore .ieee .org/ document/ 10388324

               [8]. Physical attack on monocular depth estimation with optimal adversarial patches. Available
               online: https:// link .springer .com/ chapter/ 10 .1007/ 978 -3 -031 -19839 -7 _30

               [9]. Dta: Physical camouflage attacks using differentiable transformation network. Available
               online: https:// ieeexplore .ieee .org/ document/ 9880039




                                                                                                     55
   66   67   68   69   70   71   72   73   74   75   76