Page 209 - AI for Good-Innovate for Impact
P. 209

AI for Good-Innovate for Impact



               Use case – 49: AI-enabled Soil Analysis and Weather Station for

               Local Farmers                                                                                        49-CSIR-INSTI












               Country: Ghana 

               Organization: CSIR - Institute for Scientific and Technological Information 

               Contact person: Dennis Agyemanh Nana Gookyi dennisgookyi@ gmail .com,
                                             +233503493435,
                                             Fortunatus Aabangbio Wulnye fortunatuswulnye@ outlook .com ,
                                             Roger Kwao Ahiadormey rogerkwao@ gmail .com
                                             Michael Wilson yboabengwilson@ gmail .com
                                             Yaw Twum Barimah ytbarimah@ yahoo .com
                                             Paul Danquah pauldanquah@ yahoo .com


               49�1� Use case summary table


                Domain                  Agriculture
                The problem to be       Inaccurate weather and soil condition predictions for local farm-
                addressed               lands due to reliance on national meteorological data that is not
                                        specific to local areas. This leads to crop losses and reduced yield
                                        for local farmers.

                Key aspects of the solu-  •  Real-time data collection using AI-enabled weather stations
                tion                      and soil analysis sensors.
                                        •  Monitoring of rainfall intensity, wind intensity and direction,
                                          temperature, humidity, pressure, and air quality.
                                        •  Soil analysis for temperature, humidity, pH, NPK, and conduc-
                                          tivity (EC).
                                        •  Data visualization on dashboards and accessibility through
                                          smartphone applications and web browsers.
                                        •  Predictive modeling for accurate local farm-specific forecasts.

                Technology keywords     AI, soil analysis, weather station, real-time data, predictive model-
                                        ing, IoT, sensors
                Data availability       Privately available

                Metadata (type of data)   •  Environmental data (rainfall, wind, temperature, humidity, pres-
                                          sure, air quality)
                                        •  Soil data (temperature, humidity, pH, NPK, conductivity)

                Model Training and      Using collected data over time to design and refine predictive
                fine-tuning             models for accurate local forecasts.

                Testbeds or pilot deploy- https:// github .com/ ITU -AI -ML -in -5G -Challenge/ ITU -2024
                ments                   -GenStorm -Submission -Next -Gen -TinyML -Smart -Weather -Station





                                                                                                    193
   204   205   206   207   208   209   210   211   212   213   214