Page 22 - Case study: Crime prediction for more agile policing in cities – Rio de Janeiro, Brazil
P. 22

Endnotes


            1   Section 1.1 is based on Wikipedia data on Rio de Janeiro.
            2   http:// www .forumseguranca .org .br/ wp -content/ uploads/ 2018/ 08/ FBSP _Anuario _Brasileiro _Seguranca
                _Publica _Infogr %C3 %A1fico _2018 .pdf
            3   https:// www .nytimes .com/ 2018/ 08/ 10/ world/ americas/ brazil -murder -rate -record .html

            4   https:// en .wikipedia .org/ wiki/ Rio _de _Janeiro
            5   Braga, Papachristos, Hureau, 2012.

            6   Johnson, Guerette, Bowers, 2014.
            7   Muggah, 2018.
            8   FAT/ML (n.d.). Fairness, Accountability, and Transparency in Machine Learning. Retrieved

            8   February 07, 2019, from http:// www .fatml .org/ resources/ principles -for -accountable -algorithms
            9   Knight, 2017.
            10   Lum, Isaac, 2016.

            11   Oram, 2016.
            12   Cohen, Felson, 1979.
            13   Cornish, Clarke, 1987.

            14   Cullen, Wilcox, (n.d.).
            15   Lum, Isaac, 2016.

            16   Ensign, Friedler, Neville, Scheidegger, Venkatasubramanian, 2017.
            17   Winston, Burrington, 2018.
            18   Winston, 2018.

            19   Mortimer, 2017.
            20   Olligschlaeger, (n.d.).
            21   Muggah, 2018.



























             16  Crime prediction for more agile policing in cities – Rio de Janeiro, Brazil
   17   18   19   20   21   22   23   24