Page 107 - ITU Kaleidoscope 2016
P. 107

ICTs for a Sustainable World




          Table 2: Required time to generate a transmit string in different  scheme reduces PAPR more than existing schemes, where its
          pulse shaping schemes (parallel filters)            computational cost is higher, but acceptable. The PAPR in
            Pulse Shaping                  SC-IFDMA          our scheme is 2.11 dB, 1.08 dB, and 0.67 dB less than those
                                     QPSK(µs)   16QMA(µs)    in RC pulse shaping for QPSK, 16-QAM and 64-QAM re-
            RC                        643.74      720.79     spectively.
            RRC                       644.73      722.58
            PLP                       637.06      718.92                       REFERENCES
            PEP                       643.56      717.96
            PP (n = 2)                637.44      719.50     [1] L. M. Ericsson, “More than 50 billion connected de-
            PLCP (µ = 1.6)            687.09      755.12         vices,” White Paper, Feb. 2011.
            Proposed (µ = 1 and ν = 2)  710.26    774.42
                                                             [2] T. Wattanasuwakull and W. Benjapolakul, ”PAPR reduc-
                                                                 tion for OFDM transmission by using method of tone
          Table 3: Required time to generate a transmit string in different  reservation and tone injection,” 5th International Confer-
          pulse shaping schemes (combined filters)                ence on information, Communications and Signal Pro-
                                                                 cessing, Bangkok, pp. 273-277, 2005.
            Pulse Shaping                  SC-IFDMA
                                     QPSK(µs)   16QMA(µs)    [3] S. H. Muller and J. B. Huber, “A comparison of
            RC                        643.74      720.79         peak power reduction Schemes for OFDM,“ IEEE
            RRC                       644.73      722.58         Global Telecommunications Conference (GLOBECOM),
            PLP                       637.06      718.92         Phoenix, vol. 1, pp. 1-5, Nov. 3-8, 1997.
            PEP                       643.56      717.96
                                                             [4] R. W. Bauml, R. F. H. Fisher, and J. B. Huber, “Reducing
            PP (n = 2)                637.43      719.50
                                                                 the peak-to-average power ratio of multicarrier modula-
            PLCP (µ = 1.6)            637.39      719.23
                                                                 tion by selected mapping,” Electronics Letters, vol. 32,
            Proposed (µ = 1 and ν = 2)  645.31    720.59
                                                                 no. 22, pp. 2056-2057, Oct. 1996.
                                                             [5] H. Breiling, S. H. Muller-Weinfurtner, and J. B. Huber,
                                                                 “SLM peak-power reduction without explicit side infor-
          To compare different pulse shaping schemes, the average (β)  mation,” IEEE Communications Letters, vol. 5, no. 6, pp.
                          2
          and the variance (σ ) of PAPR in dB are shown in Table IV
                                                                 239-2041, Jun. 2001.
          for α = 0.35 and sampling frequency of 20 MHz. Note
          that our proposed scheme has the least values of PAPR aver-  [6] S. H. Muller and J. B. Huber, “OFDM with reduced
          age and variance compared to other pulse shaping schemes.  peak-to-average power ratio by optimum combination of
          Specifically, the average PAPR in our scheme is 2.11 dB,  partial transmit sequences,” Electronics Letters, vol. 33,
          1.08 dB and 0.67 dB less than those in RC pulse shaping for  no. 5, pp. 368-369, Feb. 1997.
          QPSK, 16-QAM and 64-QAM respectively.
                                                             [7] S. H. Muller and J. B. Huber, “A novel peak power re-
                                                                 duction scheme for OFDM,” The 8th IEEE International
                          6. CONCLUSION                          Symposium on Personal, Indoor and Mobile Radio Com-
                                                                 munications (PIMRC), Helsinki,vol. 4, pp. 1090-1094,
          In this paper, we proposed a novel pulse shaping scheme to  Sep. 1-4, 1997.
          reduce PAPR in SC-FDMA systems, and compared its per-
                                                             [8] A. D. S. Jayalath and C. Tellambura, “Adaptive PTS ap-
          formance with other existing schemes via simulation. Our
                                                                 proach for reduction of peak-to-average power ratio of
                                                                 OFDM signal,” Electronics Letters, vol. 36, no. 14, pp.
          Table 4: Average values and variances of PAPR for different pulse  1226-1228, Jul. 2000.
          shaping schemes
                                                             [9] L. J. Cimini and N. R. Sollenberger, “Peak-to-average
            Pulse Shaping   QPSK       16QAM      64QAM          power ratio reduction of an OFDM signal using partial
                           β     σ 2   β    σ 2   β    σ 2       transmit sequences,” IEEE Communication Letters, vol.
            RC            4.45  0.11  5.49  0.32  5.76  0.32     4, no. 3, pp. 86-88, Mar. 2000.
            RRC           3.53  0.05  5.02  0.14  5.55  0.14
                                                             [10] C. Tellambura, “Improved phase factor computation for
            PLP           3.93  0.07  5.21  0.25  5.54  0.25
                                                                 the PAR reduction of an OFDM signal using PTS,” IEEE
            PEP           3.77  0.07  5.12  0.24  5.48  0.24
                                                                 Communication Letters, vol. 5, no. 4, pp. 135-137, Apr.
            PP (n = 2)    3.10  0.04  4.81  0.15  5.27  0.18
                                                                 2001.
            PLCP (µ = 1.6)  3.70  0.08  5.09  0.23  5.45  0.23
            Convex (d = 5)  3.90  0.16  4.99  0.23  5.39  0.21  [11] S. H. Han and J. H. Lee, “PAPR reduction of OFDM
            Concave (d = 1)  3.64  0.08  5.04  0.25  5.42  0.22  signals using a reduced complexity PTS technique,”
            Proposed      2.34  0.02  4.41  0.08  5.09  0.10     IEEE Signal Processing Letters, vol. 11, no. 11, pp. 887-
                                                                 890, Nov. 2004.



                                                          – 89 –
   102   103   104   105   106   107   108   109   110   111   112