Page 222 - AI for Good Innovate for Impact
P. 222

AI for Good Innovate for Impact



                      [4]  hkust-adsl, “GitHub – hkust-adsl/kubernetes-scheduler-simulator: Kubernetes Scheduler
                           Simulator,” GitHub, May 11, 2023. https:// github .com/ hkust -adsl/ kubernetes -scheduler
                           -simulator.
                      [5]  qzweng, “GitHub – qzweng/clusterdata: cluster data collected from production clusters
                           in Alibaba for cluster management research,” GitHub, 2021. https:// github .com/ qzweng/
                           clusterdata/ tree/ master  (accessed Jun. 09, 2025).
                      [6]  W. Gropp, Torsten Hoefler, Rajeev Thakur, and Ewing Lusk, Using advanced MPI modern
                           features of the Message-Passing Interface. Cambridge, Mass. The Mit Press, 2014.
                      [7]  Q. Weng et al., “{MLaaS} in the Wild: Workload Analysis and Scheduling in {Large-
                           Scale} Heterogeneous {GPU} Clusters,” www .usenix .org, 2022. https:// www .usenix .org/
                           conference/ nsdi22/ presentation/ weng
                      [8]  “Metis: Learning to Schedule Long-Running Applications in Shared Container Clusters
                           at Scale,” Supercomputing.org, 2025. https:// sc20 .supercomputing .org/ proceedings/
                           tech _paper/ tech _paper _pages/ pap211 .html (accessed Jun. 09, 2025).
                      [9]  OpenAI, “ChatGPT,” ChatGPT, 2025. https:// chatgpt .com/
                      [10]  Midjourney, “Midjourney,” Midjourney, 2024. https:// www .midjourney .com/
                      [11]  deepseek-ai, “GitHub – deepseek-ai/DeepSeek-V3,” GitHub, 2024. https:// github .com/
                           deepseek -ai/ DeepSeek -V3
                      [12]  Wang L., Weng Q., Wang W., Chen C., Li B. (2020). Metis: Learning to Schedule Long-
                           Running Applications in Shared Container Clusters at Scale. SC. Retrieved from https://
                           sc20 .supercomputing .org/ proceedings/ tech _paper/ tech _paper _pages/ pap211 .html
                      [13]  Weng Q., Xiao W., Yu Y., etc. (2022). MLaaS in the Wild: Workload Analysis and Scheduling
                           in Large-Scale Heterogeneous GPU Clusters. USENIX NSDI. Retrieved from https:// www
                           .usenix .org/ conference/ nsdi22/ presentation/ weng
                      [14]  Weng Q., Yang L., Yu Y., etc. (2023). Beware of Fragmentation: Scheduling GPU-Sharing
                           Workloads with Fragmentation Gradient Descent. USENIX ATC. Retrieved from https://
                           www .usenix .org/ conference/ atc23/ presentation/ weng













































                  186
   217   218   219   220   221   222   223   224   225   226   227