Page 222 - AI for Good Innovate for Impact
P. 222
AI for Good Innovate for Impact
[4] hkust-adsl, “GitHub – hkust-adsl/kubernetes-scheduler-simulator: Kubernetes Scheduler
Simulator,” GitHub, May 11, 2023. https:// github .com/ hkust -adsl/ kubernetes -scheduler
-simulator.
[5] qzweng, “GitHub – qzweng/clusterdata: cluster data collected from production clusters
in Alibaba for cluster management research,” GitHub, 2021. https:// github .com/ qzweng/
clusterdata/ tree/ master (accessed Jun. 09, 2025).
[6] W. Gropp, Torsten Hoefler, Rajeev Thakur, and Ewing Lusk, Using advanced MPI modern
features of the Message-Passing Interface. Cambridge, Mass. The Mit Press, 2014.
[7] Q. Weng et al., “{MLaaS} in the Wild: Workload Analysis and Scheduling in {Large-
Scale} Heterogeneous {GPU} Clusters,” www .usenix .org, 2022. https:// www .usenix .org/
conference/ nsdi22/ presentation/ weng
[8] “Metis: Learning to Schedule Long-Running Applications in Shared Container Clusters
at Scale,” Supercomputing.org, 2025. https:// sc20 .supercomputing .org/ proceedings/
tech _paper/ tech _paper _pages/ pap211 .html (accessed Jun. 09, 2025).
[9] OpenAI, “ChatGPT,” ChatGPT, 2025. https:// chatgpt .com/
[10] Midjourney, “Midjourney,” Midjourney, 2024. https:// www .midjourney .com/
[11] deepseek-ai, “GitHub – deepseek-ai/DeepSeek-V3,” GitHub, 2024. https:// github .com/
deepseek -ai/ DeepSeek -V3
[12] Wang L., Weng Q., Wang W., Chen C., Li B. (2020). Metis: Learning to Schedule Long-
Running Applications in Shared Container Clusters at Scale. SC. Retrieved from https://
sc20 .supercomputing .org/ proceedings/ tech _paper/ tech _paper _pages/ pap211 .html
[13] Weng Q., Xiao W., Yu Y., etc. (2022). MLaaS in the Wild: Workload Analysis and Scheduling
in Large-Scale Heterogeneous GPU Clusters. USENIX NSDI. Retrieved from https:// www
.usenix .org/ conference/ nsdi22/ presentation/ weng
[14] Weng Q., Yang L., Yu Y., etc. (2023). Beware of Fragmentation: Scheduling GPU-Sharing
Workloads with Fragmentation Gradient Descent. USENIX ATC. Retrieved from https://
www .usenix .org/ conference/ atc23/ presentation/ weng
186