Page 173 - AI for Good Innovate for Impact
P. 173
AI for Good Innovate for Impact
[8.] Redwan, S. M., Uddin, M. P., Ulhaq, A., Sharif, M. I., & Krishnamoorthy, G. (2024). Power
spectral density-based resting-state EEG classification of first-episode psychosis. Scientific
Reports, 14(1), 15154. https:// doi .org/ 10 .1038/ s41598 -024 -66110 -0
[9.] Manpreet Kaur, Neelam Rup Prakash, Parveen Kalra & Goverdhan Dutt Puri (2019):
Electroencephalogram-Based Pain Classification Using Artificial Neural Networks, IETE 4.1-Healthcare
Journal of Research
[10.] Morley, A., Hill, L., & Kaditis, A. G. (2016). 10-20 system EEG placement. European
Respiratory Society.
[11.] Satheesh Kumar, J., & Bhuvaneswari, P. (2012). Analysis of Electroencephalography (EEG)
Signals and Its Categorization – A Study. Procedia Engineering, 38, 2525–2536. https://
doi .org/ 10 .1016/ .proeng .2012 .06 .298
j
[12.] Cruz, A. M., & Wishart, R. (2022). Evaluation of machine learning algorithms for classification
of EEG signals. Technologies, 10(4), 79. https:// doi .org/ 10 .3390/ technologies10040079
[13.] Peng, W. (2019). EEG Preprocessing and Denoising. In L. Hu & Z. Zhang (Eds.), EEG Signal
Processing and Feature Extraction. Springer Nature Singapore. https:// doi .org/ 10 .1007/
978 -981 -13 -9113 -2
[14.] Landu Jiang, Cheng Luo, Zexiong Liao, Xuan Li, Qiuxia Chen, Yuan Jin, Kezhong Lu, Dian
Zhang, SmartRolling: A human machine interface for wheelchair control using EEG and
smart sensing techniques, Information Processing & Management, Volume 60, Issue 3,
https:// doi .org/ 10 .1016/ j .ipm .2022 .103262
137